MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem1 Structured version   Visualization version   GIF version

Theorem axcontlem1 26744
Description: Lemma for axcont 26756. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypothesis
Ref Expression
axcontlem1.1 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem1 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
Distinct variable groups:   𝐷,𝑠,𝑡,𝑥,𝑦   𝑖,𝑗,𝑠,𝑡,𝑥,𝑦,𝑁   𝑈,𝑖,𝑗,𝑠,𝑡,𝑥,𝑦   𝑖,𝑍,𝑗,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝐹(𝑥,𝑦,𝑡,𝑖,𝑗,𝑠)

Proof of Theorem axcontlem1
StepHypRef Expression
1 axcontlem1.1 . 2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
2 eleq1w 2895 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐷𝑦𝐷))
32adantr 483 . . . 4 ((𝑥 = 𝑦𝑡 = 𝑠) → (𝑥𝐷𝑦𝐷))
4 eleq1w 2895 . . . . . 6 (𝑡 = 𝑠 → (𝑡 ∈ (0[,)+∞) ↔ 𝑠 ∈ (0[,)+∞)))
54adantl 484 . . . . 5 ((𝑥 = 𝑦𝑡 = 𝑠) → (𝑡 ∈ (0[,)+∞) ↔ 𝑠 ∈ (0[,)+∞)))
6 fveq1 6663 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑖) = (𝑦𝑖))
7 oveq2 7158 . . . . . . . . . 10 (𝑡 = 𝑠 → (1 − 𝑡) = (1 − 𝑠))
87oveq1d 7165 . . . . . . . . 9 (𝑡 = 𝑠 → ((1 − 𝑡) · (𝑍𝑖)) = ((1 − 𝑠) · (𝑍𝑖)))
9 oveq1 7157 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑡 · (𝑈𝑖)) = (𝑠 · (𝑈𝑖)))
108, 9oveq12d 7168 . . . . . . . 8 (𝑡 = 𝑠 → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) = (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖))))
116, 10eqeqan12d 2838 . . . . . . 7 ((𝑥 = 𝑦𝑡 = 𝑠) → ((𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑦𝑖) = (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖)))))
1211ralbidv 3197 . . . . . 6 ((𝑥 = 𝑦𝑡 = 𝑠) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖)))))
13 fveq2 6664 . . . . . . . 8 (𝑖 = 𝑗 → (𝑦𝑖) = (𝑦𝑗))
14 fveq2 6664 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑍𝑖) = (𝑍𝑗))
1514oveq2d 7166 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑠) · (𝑍𝑖)) = ((1 − 𝑠) · (𝑍𝑗)))
16 fveq2 6664 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
1716oveq2d 7166 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑠 · (𝑈𝑖)) = (𝑠 · (𝑈𝑗)))
1815, 17oveq12d 7168 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖))) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗))))
1913, 18eqeq12d 2837 . . . . . . 7 (𝑖 = 𝑗 → ((𝑦𝑖) = (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖))) ↔ (𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))
2019cbvralvw 3449 . . . . . 6 (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑠) · (𝑍𝑖)) + (𝑠 · (𝑈𝑖))) ↔ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗))))
2112, 20syl6bb 289 . . . . 5 ((𝑥 = 𝑦𝑡 = 𝑠) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))
225, 21anbi12d 632 . . . 4 ((𝑥 = 𝑦𝑡 = 𝑠) → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗))))))
233, 22anbi12d 632 . . 3 ((𝑥 = 𝑦𝑡 = 𝑠) → ((𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))))
2423cbvopabv 5130 . 2 {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))} = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
251, 24eqtri 2844 1 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {copab 5120  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  cmin 10864  [,)cico 12734  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-iota 6308  df-fv 6357  df-ov 7153
This theorem is referenced by:  axcontlem6  26749  axcontlem11  26754
  Copyright terms: Public domain W3C validator