MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   GIF version

Theorem axcontlem10 25753
Description: Lemma for axcont 25756. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem10.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑝,𝑥   𝐵,𝑏,𝑝,𝑥,𝑦   𝐷,𝑝,𝑡,𝑥   𝐹,𝑏   𝑖,𝐹,𝑝,𝑡,𝑥   𝑦,𝐹   𝑁,𝑏   𝑖,𝑁,𝑝,𝑡,𝑥   𝑦,𝑁   𝑈,𝑏   𝑈,𝑖,𝑝,𝑡,𝑥   𝑦,𝑈   𝑍,𝑏   𝑖,𝑍,𝑝,𝑡,𝑥   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑏)

Proof of Theorem axcontlem10
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5436 . . . . 5 (𝐹𝐴) ⊆ ran 𝐹
2 simpll 789 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
3 simprl1 1104 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
4 simplr1 1101 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
5 simprl2 1105 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
64, 5sseldd 3584 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
7 simprr 795 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
8 axcontlem10.1 . . . . . . . 8 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
9 axcontlem10.2 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
108, 9axcontlem2 25745 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
112, 3, 6, 7, 10syl31anc 1326 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
12 f1ofo 6101 . . . . . 6 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷onto→(0[,)+∞))
13 forn 6075 . . . . . 6 (𝐹:𝐷onto→(0[,)+∞) → ran 𝐹 = (0[,)+∞))
1411, 12, 133syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ran 𝐹 = (0[,)+∞))
151, 14syl5sseq 3632 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ (0[,)+∞))
16 rge0ssre 12222 . . . 4 (0[,)+∞) ⊆ ℝ
1715, 16syl6ss 3595 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ ℝ)
18 imassrn 5436 . . . . 5 (𝐹𝐵) ⊆ ran 𝐹
1918, 14syl5sseq 3632 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ (0[,)+∞))
2019, 16syl6ss 3595 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ ℝ)
218, 9axcontlem9 25752 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛)
22 dedekindle 10145 . . 3 (((𝐹𝐴) ⊆ ℝ ∧ (𝐹𝐵) ⊆ ℝ ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
2317, 20, 21, 22syl3anc 1323 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
24 simpr 477 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
25 simprl3 1106 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ≠ ∅)
2625ad2antrr 761 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝐵 ≠ ∅)
27 n0 3907 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
2826, 27sylib 208 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → ∃𝑏 𝑏𝐵)
29 0red 9985 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ∈ ℝ)
30 f1of 6094 . . . . . . . . . . . . . . . 16 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
3111, 30syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷⟶(0[,)+∞))
328axcontlem4 25747 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3332, 5sseldd 3584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐷)
3431, 33ffvelrnd 6316 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (0[,)+∞))
3516, 34sseldi 3581 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ ℝ)
3635ad2antrr 761 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ ℝ)
37 simprl 793 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 𝑘 ∈ ℝ)
38 elrege0 12220 . . . . . . . . . . . . . . 15 ((𝐹𝑈) ∈ (0[,)+∞) ↔ ((𝐹𝑈) ∈ ℝ ∧ 0 ≤ (𝐹𝑈)))
3938simprbi 480 . . . . . . . . . . . . . 14 ((𝐹𝑈) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑈))
4034, 39syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 0 ≤ (𝐹𝑈))
4140ad2antrr 761 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ (𝐹𝑈))
42 f1of1 6093 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷1-1→(0[,)+∞))
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1→(0[,)+∞))
44 f1elima 6474 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑈𝐷𝐴𝐷) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
4543, 33, 32, 44syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
465, 45mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (𝐹𝐴))
4746adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ (𝐹𝐴))
48 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐵)
4943adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐹:𝐷1-1→(0[,)+∞))
50 simpl1 1062 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍 ∈ (𝔼‘𝑁))
51 simpl2 1063 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑈𝐴)
52 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍𝑈)
5350, 51, 523jca 1240 . . . . . . . . . . . . . . . . . . . . 21 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈))
548axcontlem3 25746 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
5553, 54sylan2 491 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
5655sselda 3583 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐷)
5755adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐵𝐷)
58 f1elima 6474 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑏𝐷𝐵𝐷) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
5949, 56, 57, 58syl3anc 1323 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
6048, 59mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ (𝐹𝐵))
6160adantrl 751 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ (𝐹𝐵))
6247, 61jca 554 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)))
63 breq1 4616 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐹𝑈) → (𝑚𝑘 ↔ (𝐹𝑈) ≤ 𝑘))
6463anbi1d 740 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑈) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘𝑛)))
65 breq2 4617 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐹𝑏) → (𝑘𝑛𝑘 ≤ (𝐹𝑏)))
6665anbi2d 739 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑏) → (((𝐹𝑈) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏))))
6764, 66rspc2va 3307 . . . . . . . . . . . . . . 15 ((((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6862, 67sylan 488 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6968an32s 845 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
7069simpld 475 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ≤ 𝑘)
7129, 36, 37, 41, 70letrd 10138 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ 𝑘)
7271expr 642 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (𝑏𝐵 → 0 ≤ 𝑘))
7372exlimdv 1858 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (∃𝑏 𝑏𝐵 → 0 ≤ 𝑘))
7428, 73mpd 15 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 0 ≤ 𝑘)
75 elrege0 12220 . . . . . . . 8 (𝑘 ∈ (0[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
7624, 74, 75sylanbrc 697 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ (0[,)+∞))
7776ex 450 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → 𝑘 ∈ (0[,)+∞)))
78 ssrab2 3666 . . . . . . . . . 10 {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)} ⊆ (𝔼‘𝑁)
798, 78eqsstri 3614 . . . . . . . . 9 𝐷 ⊆ (𝔼‘𝑁)
80 simpr 477 . . . . . . . . . 10 ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) → 𝑘 ∈ (0[,)+∞))
81 f1ocnvdm 6494 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹𝑘) ∈ 𝐷)
8211, 80, 81syl2an 494 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ 𝐷)
8379, 82sseldi 3581 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ (𝔼‘𝑁))
842, 3, 63jca 1240 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
8584, 7jca 554 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8685adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8732sselda 3583 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑞𝐴) → 𝑞𝐷)
8887adantrr 752 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑞𝐷)
8988adantrl 751 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑞𝐷)
90 simplr 791 . . . . . . . . . . . . . . 15 (((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑘 ∈ (0[,)+∞))
9111, 90, 81syl2an 494 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) ∈ 𝐷)
9255sselda 3583 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑟𝐵) → 𝑟𝐷)
9392adantrl 751 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑟𝐷)
9493adantrl 751 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑟𝐷)
9589, 91, 943jca 1240 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷))
9686, 95jca 554 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)))
97 f1ofun 6096 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
9811, 97syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → Fun 𝐹)
99 fdm 6008 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷⟶(0[,)+∞) → dom 𝐹 = 𝐷)
10011, 30, 993syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → dom 𝐹 = 𝐷)
10132, 100sseqtr4d 3621 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ dom 𝐹)
102 funfvima2 6447 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10398, 101, 102syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10455, 100sseqtr4d 3621 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ⊆ dom 𝐹)
105 funfvima2 6447 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
10698, 104, 105syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
107103, 106anim12d 585 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑞𝐴𝑟𝐵) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵))))
108107imp 445 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
109108adantrl 751 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
110 simprll 801 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
111 breq1 4616 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑞) → (𝑚𝑘 ↔ (𝐹𝑞) ≤ 𝑘))
112111anbi1d 740 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑞) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘𝑛)))
113 breq2 4617 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑟) → (𝑘𝑛𝑘 ≤ (𝐹𝑟)))
114113anbi2d 739 . . . . . . . . . . . . . . 15 (𝑛 = (𝐹𝑟) → (((𝐹𝑞) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
115112, 114rspc2v 3306 . . . . . . . . . . . . . 14 (((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
116109, 110, 115sylc 65 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟)))
117 f1ocnvfv2 6487 . . . . . . . . . . . . . . . 16 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹‘(𝐹𝑘)) = 𝑘)
11811, 90, 117syl2an 494 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹‘(𝐹𝑘)) = 𝑘)
119118breq2d 4625 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ↔ (𝐹𝑞) ≤ 𝑘))
120118breq1d 4623 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟) ↔ 𝑘 ≤ (𝐹𝑟)))
121119, 120anbi12d 746 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
122116, 121mpbird 247 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)))
1238, 9axcontlem8 25751 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩))
12496, 122, 123sylc 65 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
125124anassrs 679 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) ∧ (𝑞𝐴𝑟𝐵)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
126125ralrimivva 2965 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
127 opeq1 4370 . . . . . . . . . . 11 (𝑞 = 𝑥 → ⟨𝑞, 𝑟⟩ = ⟨𝑥, 𝑟⟩)
128127breq2d 4625 . . . . . . . . . 10 (𝑞 = 𝑥 → ((𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩))
129 opeq2 4371 . . . . . . . . . . 11 (𝑟 = 𝑦 → ⟨𝑥, 𝑟⟩ = ⟨𝑥, 𝑦⟩)
130129breq2d 4625 . . . . . . . . . 10 (𝑟 = 𝑦 → ((𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
131128, 130cbvral2v 3167 . . . . . . . . 9 (∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
132126, 131sylib 208 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
133 breq1 4616 . . . . . . . . . 10 (𝑏 = (𝐹𝑘) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
1341332ralbidv 2983 . . . . . . . . 9 (𝑏 = (𝐹𝑘) → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
135134rspcev 3295 . . . . . . . 8 (((𝐹𝑘) ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
13683, 132, 135syl2anc 692 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
137136expr 642 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ (0[,)+∞) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
13877, 137syld 47 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
139138ex 450 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
140139com23 86 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑘 ∈ ℝ → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
141140rexlimdv 3023 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
14223, 141mpd 15 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  wss 3555  c0 3891  cop 4154   class class class wbr 4613  {copab 4672  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  Fun wfun 5841  wf 5843  1-1wf1 5844  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  +∞cpnf 10015  cle 10019  cmin 10210  cn 10964  [,)cico 12119  ...cfz 12268  𝔼cee 25668   Btwn cbtwn 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-z 11322  df-uz 11632  df-ico 12123  df-icc 12124  df-fz 12269  df-ee 25671  df-btwn 25672
This theorem is referenced by:  axcontlem11  25754
  Copyright terms: Public domain W3C validator