MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem2 Structured version   Visualization version   GIF version

Theorem axdc3lem2 9872
Description: Lemma for axdc3 9875. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9867 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9867 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence , we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem2.1 𝐴 ∈ V
axdc3lem2.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem2.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,   𝐴,𝑛,𝑠   𝐶,𝑔,   𝐶,𝑛,𝑠   𝑔,𝐹,   𝑛,𝐹,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠   𝑥,𝑆,𝑦   𝑔,𝑘,   ,𝑠   𝑥,,𝑦   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑘)   𝐶(𝑥,𝑦,𝑘)   𝑆(𝑔,,𝑛)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑔,,𝑛,𝑠)

Proof of Theorem axdc3lem2
Dummy variables 𝑖 𝑗 𝑚 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . . 13 (𝑚 = ∅ → 𝑚 = ∅)
2 fveq2 6669 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (𝑚) = (‘∅))
32dmeqd 5773 . . . . . . . . . . . . 13 (𝑚 = ∅ → dom (𝑚) = dom (‘∅))
41, 3eleq12d 2907 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑚 ∈ dom (𝑚) ↔ ∅ ∈ dom (‘∅)))
5 eleq2 2901 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑗𝑚𝑗 ∈ ∅))
62sseq2d 3998 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘∅)))
75, 6imbi12d 347 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
84, 7anbi12d 632 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅)))))
9 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑖𝑚 = 𝑖)
10 fveq2 6669 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚) = (𝑖))
1110dmeqd 5773 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → dom (𝑚) = dom (𝑖))
129, 11eleq12d 2907 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (𝑚 ∈ dom (𝑚) ↔ 𝑖 ∈ dom (𝑖)))
13 elequ2 2125 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑗𝑚𝑗𝑖))
1410sseq2d 3998 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑖)))
1513, 14imbi12d 347 . . . . . . . . . . . 12 (𝑚 = 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗𝑖 → (𝑗) ⊆ (𝑖))))
1612, 15anbi12d 632 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖)))))
17 id 22 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖𝑚 = suc 𝑖)
18 fveq2 6669 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚) = (‘suc 𝑖))
1918dmeqd 5773 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → dom (𝑚) = dom (‘suc 𝑖))
2017, 19eleq12d 2907 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
21 eleq2 2901 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑗𝑚𝑗 ∈ suc 𝑖))
2218sseq2d 3998 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘suc 𝑖)))
2321, 22imbi12d 347 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
2420, 23anbi12d 632 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
25 peano1 7600 . . . . . . . . . . . . . . 15 ∅ ∈ ω
26 ffvelrn 6848 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆 ∧ ∅ ∈ ω) → (‘∅) ∈ 𝑆)
2725, 26mpan2 689 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (‘∅) ∈ 𝑆)
28 axdc3lem2.2 . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
29 fdm 6521 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠:suc 𝑛𝐴 → dom 𝑠 = suc 𝑛)
30 nnord 7587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → Ord 𝑛)
31 0elsuc 7549 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑛 → ∅ ∈ suc 𝑛)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → ∅ ∈ suc 𝑛)
33 peano2 7601 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
34 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ suc 𝑛))
35 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (dom 𝑠 ∈ ω ↔ suc 𝑛 ∈ ω))
3634, 35anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑠 = suc 𝑛 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω)))
3736biimprcd 252 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3832, 33, 37syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3929, 38syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠:suc 𝑛𝐴 → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
40393ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
4140impcom 410 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4241rexlimiva 3281 . . . . . . . . . . . . . . . . . . 19 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4342ss2abi 4042 . . . . . . . . . . . . . . . . . 18 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4428, 43eqsstri 4000 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4544sseli 3962 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ 𝑆 → (‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
46 fvex 6682 . . . . . . . . . . . . . . . . 17 (‘∅) ∈ V
47 dmeq 5771 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (‘∅) → dom 𝑠 = dom (‘∅))
4847eleq2d 2898 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘∅)))
4947eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (dom 𝑠 ∈ ω ↔ dom (‘∅) ∈ ω))
5048, 49anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘∅) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω)))
5146, 50elab 3666 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5245, 51sylib 220 . . . . . . . . . . . . . . 15 ((‘∅) ∈ 𝑆 → (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5352simpld 497 . . . . . . . . . . . . . 14 ((‘∅) ∈ 𝑆 → ∅ ∈ dom (‘∅))
5427, 53syl 17 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ∅ ∈ dom (‘∅))
55 noel 4295 . . . . . . . . . . . . . 14 ¬ 𝑗 ∈ ∅
5655pm2.21i 119 . . . . . . . . . . . . 13 (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))
5754, 56jctir 523 . . . . . . . . . . . 12 (:ω⟶𝑆 → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
5857adantr 483 . . . . . . . . . . 11 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
59 ffvelrn 6848 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆𝑖 ∈ ω) → (𝑖) ∈ 𝑆)
6059ancoms 461 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ :ω⟶𝑆) → (𝑖) ∈ 𝑆)
6160adantrr 715 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑖) ∈ 𝑆)
62 suceq 6255 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖)
6362fveq2d 6673 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (‘suc 𝑘) = (‘suc 𝑖))
64 2fveq3 6674 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐺‘(𝑘)) = (𝐺‘(𝑖)))
6563, 64eleq12d 2907 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((‘suc 𝑘) ∈ (𝐺‘(𝑘)) ↔ (‘suc 𝑖) ∈ (𝐺‘(𝑖))))
6665rspcva 3620 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6766adantrl 714 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6844sseli 3962 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → (𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
69 fvex 6682 . . . . . . . . . . . . . . . . . . . . 21 (𝑖) ∈ V
70 dmeq 5771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑖) → dom 𝑠 = dom (𝑖))
7170eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (𝑖)))
7270eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (dom 𝑠 ∈ ω ↔ dom (𝑖) ∈ ω))
7371, 72anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑖) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω)))
7469, 73elab 3666 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7568, 74sylib 220 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7675simprd 498 . . . . . . . . . . . . . . . . . 18 ((𝑖) ∈ 𝑆 → dom (𝑖) ∈ ω)
77 nnord 7587 . . . . . . . . . . . . . . . . . 18 (dom (𝑖) ∈ ω → Ord dom (𝑖))
78 ordsucelsuc 7536 . . . . . . . . . . . . . . . . . 18 (Ord dom (𝑖) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
7976, 77, 783syl 18 . . . . . . . . . . . . . . . . 17 ((𝑖) ∈ 𝑆 → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
8079adantr 483 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
81 dmeq 5771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑖) → dom 𝑥 = dom (𝑖))
82 suceq 6255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑥 = dom (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8483eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → (dom 𝑦 = suc dom 𝑥 ↔ dom 𝑦 = suc dom (𝑖)))
8581reseq2d 5852 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → (𝑦 ↾ dom 𝑥) = (𝑦 ↾ dom (𝑖)))
86 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → 𝑥 = (𝑖))
8785, 86eqeq12d 2837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ (𝑦 ↾ dom (𝑖)) = (𝑖)))
8884, 87anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑖) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))))
8988rabbidv 3480 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑖) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
90 axdc3lem2.3 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
91 axdc3lem2.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐴 ∈ V
9291, 28axdc3lem 9871 . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 ∈ V
9392rabex 5234 . . . . . . . . . . . . . . . . . . . . . 22 {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ∈ V
9489, 90, 93fvmpt 6767 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖) ∈ 𝑆 → (𝐺‘(𝑖)) = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
9594eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ (‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))}))
96 dmeq 5771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → dom 𝑦 = dom (‘suc 𝑖))
9796eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → (dom 𝑦 = suc dom (𝑖) ↔ dom (‘suc 𝑖) = suc dom (𝑖)))
98 reseq1 5846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → (𝑦 ↾ dom (𝑖)) = ((‘suc 𝑖) ↾ dom (𝑖)))
9998eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → ((𝑦 ↾ dom (𝑖)) = (𝑖) ↔ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
10097, 99anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (‘suc 𝑖) → ((dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖)) ↔ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
101100elrab 3679 . . . . . . . . . . . . . . . . . . . 20 ((‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
10295, 101syl6bb 289 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))))
103102simplbda 502 . . . . . . . . . . . . . . . . . 18 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
104103simpld 497 . . . . . . . . . . . . . . . . 17 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → dom (‘suc 𝑖) = suc dom (𝑖))
105104eleq2d 2898 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
10680, 105bitr4d 284 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
107106biimpd 231 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) → suc 𝑖 ∈ dom (‘suc 𝑖)))
108103simprd 498 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))
109 resss 5877 . . . . . . . . . . . . . . . 16 ((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖)
110 sseq1 3991 . . . . . . . . . . . . . . . 16 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
111109, 110mpbii 235 . . . . . . . . . . . . . . 15 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (𝑖) ⊆ (‘suc 𝑖))
112 elsuci 6256 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ suc 𝑖 → (𝑗𝑖𝑗 = 𝑖))
113 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗) ⊆ (𝑖)))
114 sstr2 3973 . . . . . . . . . . . . . . . . . . 19 ((𝑗) ⊆ (𝑖) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
115113, 114syl6 35 . . . . . . . . . . . . . . . . . 18 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
116 fveq2 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑗) = (𝑖))
117116sseq1d 3997 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((𝑗) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
118117biimprd 250 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
119118a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
120115, 119jaoi 853 . . . . . . . . . . . . . . . . 17 ((𝑗𝑖𝑗 = 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
121112, 120syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ suc 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
122121com13 88 . . . . . . . . . . . . . . 15 ((𝑖) ⊆ (‘suc 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
123108, 111, 1223syl 18 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
124107, 123anim12d 610 . . . . . . . . . . . . 13 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
12561, 67, 124syl2anc 586 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
126125ex 415 . . . . . . . . . . 11 (𝑖 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))))
1278, 16, 24, 58, 126finds2 7609 . . . . . . . . . 10 (𝑚 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚)))))
128127imp 409 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
129128simprd 498 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑗𝑚 → (𝑗) ⊆ (𝑚)))
130129expcom 416 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
131130ralrimdv 3188 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → ∀𝑗𝑚 (𝑗) ⊆ (𝑚)))
132131ralrimiv 3181 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚))
133 frn 6519 . . . . . . . . . . . 12 (:ω⟶𝑆 → ran 𝑆)
134 ffun 6516 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → Fun 𝑠)
1351343ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
136135rexlimivw 3282 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
137136ss2abi 4042 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ Fun 𝑠}
13828, 137eqsstri 4000 . . . . . . . . . . . 12 𝑆 ⊆ {𝑠 ∣ Fun 𝑠}
139133, 138sstrdi 3978 . . . . . . . . . . 11 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ Fun 𝑠})
140139sseld 3965 . . . . . . . . . 10 (:ω⟶𝑆 → (𝑢 ∈ ran 𝑢 ∈ {𝑠 ∣ Fun 𝑠}))
141 vex 3497 . . . . . . . . . . 11 𝑢 ∈ V
142 funeq 6374 . . . . . . . . . . 11 (𝑠 = 𝑢 → (Fun 𝑠 ↔ Fun 𝑢))
143141, 142elab 3666 . . . . . . . . . 10 (𝑢 ∈ {𝑠 ∣ Fun 𝑠} ↔ Fun 𝑢)
144140, 143syl6ib 253 . . . . . . . . 9 (:ω⟶𝑆 → (𝑢 ∈ ran → Fun 𝑢))
145144adantr 483 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → Fun 𝑢))
146 ffn 6513 . . . . . . . . 9 (:ω⟶𝑆 Fn ω)
147 fvelrnb 6725 . . . . . . . . . . . . 13 ( Fn ω → (𝑣 ∈ ran ↔ ∃𝑏 ∈ ω (𝑏) = 𝑣))
148 fvelrnb 6725 . . . . . . . . . . . . . . 15 ( Fn ω → (𝑢 ∈ ran ↔ ∃𝑎 ∈ ω (𝑎) = 𝑢))
149 nnord 7587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → Ord 𝑎)
150 nnord 7587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ω → Ord 𝑏)
151149, 150anim12i 614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (Ord 𝑎 ∧ Ord 𝑏))
152 ordtri3or 6222 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑎 = 𝑏𝑏𝑎))
153 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑏 → (𝑚) = (𝑏))
154153sseq2d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑏 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑏)))
155154raleqbi1dv 3403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑏 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
156155rspcv 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
157 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑎 → (𝑗) = (𝑎))
158157sseq1d 3997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑎 → ((𝑗) ⊆ (𝑏) ↔ (𝑎) ⊆ (𝑏)))
159158rspccv 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑏 (𝑗) ⊆ (𝑏) → (𝑎𝑏 → (𝑎) ⊆ (𝑏)))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
161160adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
1621613imp 1107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → (𝑎) ⊆ (𝑏))
163162orcd 869 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1641633exp 1115 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
165164com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
166 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑏 → (𝑎) = (𝑏))
167 eqimss 4022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎) = (𝑏) → (𝑎) ⊆ (𝑏))
168167orcd 869 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎) = (𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
169166, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1701692a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
171 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑎 → (𝑚) = (𝑎))
172171sseq2d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑎 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑎)))
173172raleqbi1dv 3403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑎 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
174173rspcv 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
175 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑏 → (𝑗) = (𝑏))
176175sseq1d 3997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑏 → ((𝑗) ⊆ (𝑎) ↔ (𝑏) ⊆ (𝑎)))
177176rspccv 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑎 (𝑗) ⊆ (𝑎) → (𝑏𝑎 → (𝑏) ⊆ (𝑎)))
178174, 177syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
179178adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
1801793imp 1107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → (𝑏) ⊆ (𝑎))
181180olcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1821813exp 1115 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
183182com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑎 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
184165, 170, 1833jaoi 1423 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑏𝑎 = 𝑏𝑏𝑎) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
185152, 184syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord 𝑎 ∧ Ord 𝑏) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
186151, 185mpcom 38 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎))))
187 sseq12 3993 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑎) ⊆ (𝑏) ↔ 𝑢𝑣))
188 sseq12 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏) = 𝑣 ∧ (𝑎) = 𝑢) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
189188ancoms 461 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
190187, 189orbi12d 915 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) ↔ (𝑢𝑣𝑣𝑢)))
191190biimpcd 251 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢)))
192186, 191syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢))))
193192com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
194193exp4b 433 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ω → (𝑏 ∈ ω → ((𝑎) = 𝑢 → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
195194com23 86 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ω → ((𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
196195rexlimiv 3280 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
197196rexlimdv 3283 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
198148, 197syl6bi 255 . . . . . . . . . . . . . 14 ( Fn ω → (𝑢 ∈ ran → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
199198com23 86 . . . . . . . . . . . . 13 ( Fn ω → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
200147, 199sylbid 242 . . . . . . . . . . . 12 ( Fn ω → (𝑣 ∈ ran → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
201200com24 95 . . . . . . . . . . 11 ( Fn ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢)))))
202201imp 409 . . . . . . . . . 10 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢))))
203202ralrimdv 3188 . . . . . . . . 9 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
204146, 203sylan 582 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
205145, 204jcad 515 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢))))
206205ralrimiv 3181 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → ∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
207 fununi 6428 . . . . . 6 (∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)) → Fun ran )
208206, 207syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → Fun ran )
209132, 208syldan 593 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → Fun ran )
210 vex 3497 . . . . . . . . 9 𝑚 ∈ V
211210eldm2 5769 . . . . . . . 8 (𝑚 ∈ dom ran ↔ ∃𝑢𝑚, 𝑢⟩ ∈ ran )
212 eluni2 4841 . . . . . . . . . 10 (⟨𝑚, 𝑢⟩ ∈ ran ↔ ∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣)
213210, 141opeldm 5775 . . . . . . . . . . . . . . 15 (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣)
214213a1i 11 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣))
215133, 44sstrdi 3978 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
216 ssel 3960 . . . . . . . . . . . . . . . 16 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran 𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
217 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
218 dmeq 5771 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑣 → dom 𝑠 = dom 𝑣)
219218eleq2d 2898 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom 𝑣))
220218eleq1d 2897 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (dom 𝑠 ∈ ω ↔ dom 𝑣 ∈ ω))
221219, 220anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑣 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
222217, 221elab 3666 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω))
223222simprbi 499 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → dom 𝑣 ∈ ω)
224216, 223syl6 35 . . . . . . . . . . . . . . 15 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
225215, 224syl 17 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
226214, 225anim12d 610 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → (𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
227 elnn 7589 . . . . . . . . . . . . 13 ((𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω) → 𝑚 ∈ ω)
228226, 227syl6 35 . . . . . . . . . . . 12 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → 𝑚 ∈ ω))
229228expcomd 419 . . . . . . . . . . 11 (:ω⟶𝑆 → (𝑣 ∈ ran → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω)))
230229rexlimdv 3283 . . . . . . . . . 10 (:ω⟶𝑆 → (∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω))
231212, 230syl5bi 244 . . . . . . . . 9 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
232231exlimdv 1930 . . . . . . . 8 (:ω⟶𝑆 → (∃𝑢𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
233211, 232syl5bi 244 . . . . . . 7 (:ω⟶𝑆 → (𝑚 ∈ dom ran 𝑚 ∈ ω))
234233adantr 483 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
235 id 22 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝑚 ∈ ω)
236 fnfvelrn 6847 . . . . . . . . . . 11 (( Fn ω ∧ 𝑚 ∈ ω) → (𝑚) ∈ ran )
237146, 235, 236syl2anr 598 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ :ω⟶𝑆) → (𝑚) ∈ ran )
238237adantrr 715 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚) ∈ ran )
239128simpld 497 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom (𝑚))
240 dmeq 5771 . . . . . . . . . 10 (𝑢 = (𝑚) → dom 𝑢 = dom (𝑚))
241240eliuni 4924 . . . . . . . . 9 (((𝑚) ∈ ran 𝑚 ∈ dom (𝑚)) → 𝑚 𝑢 ∈ ran dom 𝑢)
242238, 239, 241syl2anc 586 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 𝑢 ∈ ran dom 𝑢)
243 dmuni 5782 . . . . . . . 8 dom ran = 𝑢 ∈ ran dom 𝑢
244242, 243eleqtrrdi 2924 . . . . . . 7 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom ran )
245244expcom 416 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom ran ))
246234, 245impbid 214 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
247246eqrdv 2819 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → dom ran = ω)
248 rnuni 6006 . . . . . 6 ran ran = 𝑠 ∈ ran ran 𝑠
249 frn 6519 . . . . . . . . . . . . . 14 (𝑠:suc 𝑛𝐴 → ran 𝑠𝐴)
2502493ad2ant1 1129 . . . . . . . . . . . . 13 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
251250rexlimivw 3282 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
252251ss2abi 4042 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ ran 𝑠𝐴}
25328, 252eqsstri 4000 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ ran 𝑠𝐴}
254133, 253sstrdi 3978 . . . . . . . . 9 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ ran 𝑠𝐴})
255 ssel 3960 . . . . . . . . . 10 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran 𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴}))
256 abid 2803 . . . . . . . . . 10 (𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴} ↔ ran 𝑠𝐴)
257255, 256syl6ib 253 . . . . . . . . 9 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran → ran 𝑠𝐴))
258254, 257syl 17 . . . . . . . 8 (:ω⟶𝑆 → (𝑠 ∈ ran → ran 𝑠𝐴))
259258ralrimiv 3181 . . . . . . 7 (:ω⟶𝑆 → ∀𝑠 ∈ ran ran 𝑠𝐴)
260 iunss 4968 . . . . . . 7 ( 𝑠 ∈ ran ran 𝑠𝐴 ↔ ∀𝑠 ∈ ran ran 𝑠𝐴)
261259, 260sylibr 236 . . . . . 6 (:ω⟶𝑆 𝑠 ∈ ran ran 𝑠𝐴)
262248, 261eqsstrid 4014 . . . . 5 (:ω⟶𝑆 → ran ran 𝐴)
263262adantr 483 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran ran 𝐴)
264 df-fn 6357 . . . . 5 ( ran Fn ω ↔ (Fun ran ∧ dom ran = ω))
265 df-f 6358 . . . . . 6 ( ran :ω⟶𝐴 ↔ ( ran Fn ω ∧ ran ran 𝐴))
266265biimpri 230 . . . . 5 (( ran Fn ω ∧ ran ran 𝐴) → ran :ω⟶𝐴)
267264, 266sylanbr 584 . . . 4 (((Fun ran ∧ dom ran = ω) ∧ ran ran 𝐴) → ran :ω⟶𝐴)
268209, 247, 263, 267syl21anc 835 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran :ω⟶𝐴)
269 fnfvelrn 6847 . . . . . . . 8 (( Fn ω ∧ ∅ ∈ ω) → (‘∅) ∈ ran )
270146, 25, 269sylancl 588 . . . . . . 7 (:ω⟶𝑆 → (‘∅) ∈ ran )
271270adantr 483 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ∈ ran )
272 elssuni 4867 . . . . . 6 ((‘∅) ∈ ran → (‘∅) ⊆ ran )
273271, 272syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ⊆ ran )
27454adantr 483 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∅ ∈ dom (‘∅))
275 funssfv 6690 . . . . 5 ((Fun ran ∧ (‘∅) ⊆ ran ∧ ∅ ∈ dom (‘∅)) → ( ran ‘∅) = ((‘∅)‘∅))
276209, 273, 274, 275syl3anc 1367 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = ((‘∅)‘∅))
277 simp2 1133 . . . . . . . . . . 11 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
278277rexlimivw 3282 . . . . . . . . . 10 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
279278ss2abi 4042 . . . . . . . . 9 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
28028, 279eqsstri 4000 . . . . . . . 8 𝑆 ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
281133, 280sstrdi 3978 . . . . . . 7 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶})
282 ssel 3960 . . . . . . . 8 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → (‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶}))
283 fveq1 6668 . . . . . . . . . 10 (𝑠 = (‘∅) → (𝑠‘∅) = ((‘∅)‘∅))
284283eqeq1d 2823 . . . . . . . . 9 (𝑠 = (‘∅) → ((𝑠‘∅) = 𝐶 ↔ ((‘∅)‘∅) = 𝐶))
28546, 284elab 3666 . . . . . . . 8 ((‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶} ↔ ((‘∅)‘∅) = 𝐶)
286282, 285syl6ib 253 . . . . . . 7 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
287281, 286syl 17 . . . . . 6 (:ω⟶𝑆 → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
288287adantr 483 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
289271, 288mpd 15 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅)‘∅) = 𝐶)
290276, 289eqtrd 2856 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = 𝐶)
291 nfv 1911 . . . . 5 𝑘 :ω⟶𝑆
292 nfra1 3219 . . . . 5 𝑘𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))
293291, 292nfan 1896 . . . 4 𝑘(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))
294133ad2antrr 724 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ran 𝑆)
295 peano2 7601 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
296 fnfvelrn 6847 . . . . . . . . 9 (( Fn ω ∧ suc 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
297146, 295, 296syl2an 597 . . . . . . . 8 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
298297adantlr 713 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
299239expcom 416 . . . . . . . . 9 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom (𝑚)))
300299ralrimiv 3181 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚))
301 id 22 . . . . . . . . . . 11 (𝑚 = suc 𝑘𝑚 = suc 𝑘)
302 fveq2 6669 . . . . . . . . . . . 12 (𝑚 = suc 𝑘 → (𝑚) = (‘suc 𝑘))
303302dmeqd 5773 . . . . . . . . . . 11 (𝑚 = suc 𝑘 → dom (𝑚) = dom (‘suc 𝑘))
304301, 303eleq12d 2907 . . . . . . . . . 10 (𝑚 = suc 𝑘 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
305304rspcv 3617 . . . . . . . . 9 (suc 𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
306295, 305syl 17 . . . . . . . 8 (𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
307300, 306mpan9 509 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ dom (‘suc 𝑘))
308 eleq2 2901 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑠 = suc 𝑛 → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ suc 𝑛))
309308biimpa 479 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑠 = suc 𝑛 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
31029, 309sylan 582 . . . . . . . . . . . . . . . . . . 19 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
311 ordsucelsuc 7536 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑛 → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
31230, 311syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
313312biimprd 250 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛𝑘𝑛))
314 rsp 3205 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑘𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
315313, 314syl9r 78 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
316315com13 88 . . . . . . . . . . . . . . . . . . 19 (suc 𝑘 ∈ suc 𝑛 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
317310, 316syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
318317ex 415 . . . . . . . . . . . . . . . . 17 (𝑠:suc 𝑛𝐴 → (suc 𝑘 ∈ dom 𝑠 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
319318com24 95 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
320319imp 409 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
3213203adant2 1127 . . . . . . . . . . . . . 14 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
322321impcom 410 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
323322rexlimiva 3281 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
324323ss2abi 4042 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
32528, 324eqsstri 4000 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
326 sstr 3974 . . . . . . . . . 10 ((ran 𝑆𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}) → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
327325, 326mpan2 689 . . . . . . . . 9 (ran 𝑆 → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
328327sseld 3965 . . . . . . . 8 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}))
329 fvex 6682 . . . . . . . . 9 (‘suc 𝑘) ∈ V
330 dmeq 5771 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → dom 𝑠 = dom (‘suc 𝑘))
331330eleq2d 2898 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
332 fveq1 6668 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝑠‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
333 fveq1 6668 . . . . . . . . . . . 12 (𝑠 = (‘suc 𝑘) → (𝑠𝑘) = ((‘suc 𝑘)‘𝑘))
334333fveq2d 6673 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝐹‘(𝑠𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
335332, 334eleq12d 2907 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
336331, 335imbi12d 347 . . . . . . . . 9 (𝑠 = (‘suc 𝑘) → ((suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
337329, 336elab 3666 . . . . . . . 8 ((‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
338328, 337syl6ib 253 . . . . . . 7 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
339294, 298, 307, 338syl3c 66 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))
340209adantr 483 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → Fun ran )
341 elssuni 4867 . . . . . . . . . 10 ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ⊆ ran )
342297, 341syl 17 . . . . . . . . 9 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
343342adantlr 713 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
344 funssfv 6690 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
345340, 343, 307, 344syl3anc 1367 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
346215sseld 3965 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
347330eleq2d 2898 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘suc 𝑘)))
348330eleq1d 2897 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (dom 𝑠 ∈ ω ↔ dom (‘suc 𝑘) ∈ ω))
349347, 348anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑠 = (‘suc 𝑘) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
350329, 349elab 3666 . . . . . . . . . . . . . . 15 ((‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
351346, 350syl6ib 253 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
352351adantr 483 . . . . . . . . . . . . 13 ((:ω⟶𝑆𝑘 ∈ ω) → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
353297, 352mpd 15 . . . . . . . . . . . 12 ((:ω⟶𝑆𝑘 ∈ ω) → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
354353simprd 498 . . . . . . . . . . 11 ((:ω⟶𝑆𝑘 ∈ ω) → dom (‘suc 𝑘) ∈ ω)
355 nnord 7587 . . . . . . . . . . 11 (dom (‘suc 𝑘) ∈ ω → Ord dom (‘suc 𝑘))
356 ordtr 6204 . . . . . . . . . . 11 (Ord dom (‘suc 𝑘) → Tr dom (‘suc 𝑘))
357 trsuc 6274 . . . . . . . . . . . 12 ((Tr dom (‘suc 𝑘) ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → 𝑘 ∈ dom (‘suc 𝑘))
358357ex 415 . . . . . . . . . . 11 (Tr dom (‘suc 𝑘) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
359354, 355, 356, 3584syl 19 . . . . . . . . . 10 ((:ω⟶𝑆𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
360359adantlr 713 . . . . . . . . 9 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
361307, 360mpd 15 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom (‘suc 𝑘))
362 funssfv 6690 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran 𝑘 ∈ dom (‘suc 𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
363340, 343, 361, 362syl3anc 1367 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
364 simpl 485 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
365 simpr 487 . . . . . . . . 9 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
366365fveq2d 6673 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (𝐹‘( ran 𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
367364, 366eleq12d 2907 . . . . . . 7 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
368345, 363, 367syl2anc 586 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
369339, 368mpbird 259 . . . . 5 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
370369ex 415 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑘 ∈ ω → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
371293, 370ralrimi 3216 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
372 vex 3497 . . . . . 6 ∈ V
373372rnex 7616 . . . . 5 ran ∈ V
374373uniex 7466 . . . 4 ran ∈ V
375 feq1 6494 . . . . 5 (𝑔 = ran → (𝑔:ω⟶𝐴 ran :ω⟶𝐴))
376 fveq1 6668 . . . . . 6 (𝑔 = ran → (𝑔‘∅) = ( ran ‘∅))
377376eqeq1d 2823 . . . . 5 (𝑔 = ran → ((𝑔‘∅) = 𝐶 ↔ ( ran ‘∅) = 𝐶))
378 fveq1 6668 . . . . . . 7 (𝑔 = ran → (𝑔‘suc 𝑘) = ( ran ‘suc 𝑘))
379 fveq1 6668 . . . . . . . 8 (𝑔 = ran → (𝑔𝑘) = ( ran 𝑘))
380379fveq2d 6673 . . . . . . 7 (𝑔 = ran → (𝐹‘(𝑔𝑘)) = (𝐹‘( ran 𝑘)))
381378, 380eleq12d 2907 . . . . . 6 (𝑔 = ran → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
382381ralbidv 3197 . . . . 5 (𝑔 = ran → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
383375, 377, 3823anbi123d 1432 . . . 4 (𝑔 = ran → ((𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))) ↔ ( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))))
384374, 383spcev 3606 . . 3 (( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
385268, 290, 371, 384syl3anc 1367 . 2 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
386385exlimiv 1927 1 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  cop 4572   cuni 4837   ciun 4918  cmpt 5145  Tr wtr 5171  dom cdm 5554  ran crn 5555  cres 5556  Ord word 6189  suc csuc 6192  Fun wfun 6348   Fn wfn 6349  wf 6350  cfv 6354  ωcom 7579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-dc 9867
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-om 7580  df-1o 8101
This theorem is referenced by:  axdc3lem4  9874
  Copyright terms: Public domain W3C validator