MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uzlem Structured version   Visualization version   GIF version

Theorem axdc4uzlem 12599
Description: Lemma for axdc4uz 12600. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
axdc4uz.3 𝐴 ∈ V
axdc4uz.4 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
axdc4uz.5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
Assertion
Ref Expression
axdc4uzlem ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝑥,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘,𝑛,𝑥   𝑦,𝑔,𝑀,𝑘,𝑛,𝑥   𝑔,𝑍,𝑛,𝑥   𝑔,𝐺,𝑘,𝑛,𝑥   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑔,𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem axdc4uzlem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc4uz.1 . . . . . . . . . . 11 𝑀 ∈ ℤ
2 axdc4uz.4 . . . . . . . . . . 11 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
31, 2om2uzf1oi 12569 . . . . . . . . . 10 𝐺:ω–1-1-onto→(ℤ𝑀)
4 axdc4uz.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 f1oeq3 6027 . . . . . . . . . . 11 (𝑍 = (ℤ𝑀) → (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀))
73, 6mpbir 219 . . . . . . . . 9 𝐺:ω–1-1-onto𝑍
8 f1of 6035 . . . . . . . . 9 (𝐺:ω–1-1-onto𝑍𝐺:ω⟶𝑍)
97, 8ax-mp 5 . . . . . . . 8 𝐺:ω⟶𝑍
109ffvelrni 6251 . . . . . . 7 (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝑍)
11 fovrn 6679 . . . . . . 7 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺𝑛) ∈ 𝑍𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1210, 11syl3an2 1351 . . . . . 6 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
13123expb 1257 . . . . 5 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥𝐴)) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1413ralrimivva 2953 . . . 4 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
15 axdc4uz.5 . . . . 5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
1615fmpt2 7103 . . . 4 (∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
1714, 16sylib 206 . . 3 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
18 axdc4uz.3 . . . 4 𝐴 ∈ V
1918axdc4 9138 . . 3 ((𝐶𝐴𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
2017, 19sylan2 489 . 2 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
21 f1ocnv 6047 . . . . . . 7 (𝐺:ω–1-1-onto𝑍𝐺:𝑍1-1-onto→ω)
22 f1of 6035 . . . . . . 7 (𝐺:𝑍1-1-onto→ω → 𝐺:𝑍⟶ω)
237, 21, 22mp2b 10 . . . . . 6 𝐺:𝑍⟶ω
24 fco 5957 . . . . . 6 ((𝑓:ω⟶𝐴𝐺:𝑍⟶ω) → (𝑓𝐺):𝑍𝐴)
2523, 24mpan2 702 . . . . 5 (𝑓:ω⟶𝐴 → (𝑓𝐺):𝑍𝐴)
26253ad2ant1 1074 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓𝐺):𝑍𝐴)
27 uzid 11534 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
281, 27ax-mp 5 . . . . . . . 8 𝑀 ∈ (ℤ𝑀)
2928, 4eleqtrri 2686 . . . . . . 7 𝑀𝑍
30 fvco3 6170 . . . . . . 7 ((𝐺:𝑍⟶ω ∧ 𝑀𝑍) → ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀)))
3123, 29, 30mp2an 703 . . . . . 6 ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀))
321, 2om2uz0i 12563 . . . . . . . 8 (𝐺‘∅) = 𝑀
33 peano1 6954 . . . . . . . . 9 ∅ ∈ ω
34 f1ocnvfv 6412 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅))
357, 33, 34mp2an 703 . . . . . . . 8 ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅)
3632, 35ax-mp 5 . . . . . . 7 (𝐺𝑀) = ∅
3736fveq2i 6091 . . . . . 6 (𝑓‘(𝐺𝑀)) = (𝑓‘∅)
3831, 37eqtri 2631 . . . . 5 ((𝑓𝐺)‘𝑀) = (𝑓‘∅)
39 simp2 1054 . . . . 5 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓‘∅) = 𝐶)
4038, 39syl5eq 2655 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ((𝑓𝐺)‘𝑀) = 𝐶)
4123ffvelrni 6251 . . . . . . . . . 10 (𝑘𝑍 → (𝐺𝑘) ∈ ω)
4241adantl 480 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝐺𝑘) ∈ ω)
43 suceq 5693 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → suc 𝑚 = suc (𝐺𝑘))
4443fveq2d 6092 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (𝐺𝑘)))
45 id 22 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → 𝑚 = (𝐺𝑘))
46 fveq2 6088 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → (𝑓𝑚) = (𝑓‘(𝐺𝑘)))
4745, 46oveq12d 6545 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑚𝐻(𝑓𝑚)) = ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))))
4844, 47eleq12d 2681 . . . . . . . . . 10 (𝑚 = (𝐺𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) ↔ (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
4948rspcv 3277 . . . . . . . . 9 ((𝐺𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
5042, 49syl 17 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
514peano2uzs 11574 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
52 fvco3 6170 . . . . . . . . . . . 12 ((𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
5323, 51, 52sylancr 693 . . . . . . . . . . 11 (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
541, 2om2uzsuci 12564 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
5541, 54syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
56 f1ocnvfv2 6411 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto𝑍𝑘𝑍) → (𝐺‘(𝐺𝑘)) = 𝑘)
577, 56mpan 701 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝐺‘(𝐺𝑘)) = 𝑘)
5857oveq1d 6542 . . . . . . . . . . . . . 14 (𝑘𝑍 → ((𝐺‘(𝐺𝑘)) + 1) = (𝑘 + 1))
5955, 58eqtrd 2643 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = (𝑘 + 1))
60 peano2 6955 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → suc (𝐺𝑘) ∈ ω)
6141, 60syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → suc (𝐺𝑘) ∈ ω)
62 f1ocnvfv 6412 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝑘) ∈ ω) → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
637, 61, 62sylancr 693 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
6459, 63mpd 15 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘))
6564fveq2d 6092 . . . . . . . . . . 11 (𝑘𝑍 → (𝑓‘(𝐺‘(𝑘 + 1))) = (𝑓‘suc (𝐺𝑘)))
6653, 65eqtr2d 2644 . . . . . . . . . 10 (𝑘𝑍 → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
6766adantl 480 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
68 ffvelrn 6250 . . . . . . . . . . . 12 ((𝑓:ω⟶𝐴 ∧ (𝐺𝑘) ∈ ω) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
6941, 68sylan2 489 . . . . . . . . . . 11 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
70 fveq2 6088 . . . . . . . . . . . . 13 (𝑛 = (𝐺𝑘) → (𝐺𝑛) = (𝐺‘(𝐺𝑘)))
7170oveq1d 6542 . . . . . . . . . . . 12 (𝑛 = (𝐺𝑘) → ((𝐺𝑛)𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹𝑥))
72 oveq2 6535 . . . . . . . . . . . 12 (𝑥 = (𝑓‘(𝐺𝑘)) → ((𝐺‘(𝐺𝑘))𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
73 ovex 6555 . . . . . . . . . . . 12 ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) ∈ V
7471, 72, 15, 73ovmpt2 6672 . . . . . . . . . . 11 (((𝐺𝑘) ∈ ω ∧ (𝑓‘(𝐺𝑘)) ∈ 𝐴) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
7542, 69, 74syl2anc 690 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
76 fvco3 6170 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ω ∧ 𝑘𝑍) → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7723, 76mpan 701 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7877eqcomd 2615 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑓‘(𝐺𝑘)) = ((𝑓𝐺)‘𝑘))
7957, 78oveq12d 6545 . . . . . . . . . . 11 (𝑘𝑍 → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8079adantl 480 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8175, 80eqtrd 2643 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8267, 81eleq12d 2681 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8350, 82sylibd 227 . . . . . . 7 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8483impancom 454 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8584ralrimiv 2947 . . . . 5 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
86853adant2 1072 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
87 vex 3175 . . . . . 6 𝑓 ∈ V
88 rdgfun 7376 . . . . . . . . 9 Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀)
89 omex 8400 . . . . . . . . 9 ω ∈ V
90 resfunexg 6362 . . . . . . . . 9 ((Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V)
9188, 89, 90mp2an 703 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V
922, 91eqeltri 2683 . . . . . . 7 𝐺 ∈ V
9392cnvex 6983 . . . . . 6 𝐺 ∈ V
9487, 93coex 6988 . . . . 5 (𝑓𝐺) ∈ V
95 feq1 5925 . . . . . 6 (𝑔 = (𝑓𝐺) → (𝑔:𝑍𝐴 ↔ (𝑓𝐺):𝑍𝐴))
96 fveq1 6087 . . . . . . 7 (𝑔 = (𝑓𝐺) → (𝑔𝑀) = ((𝑓𝐺)‘𝑀))
9796eqeq1d 2611 . . . . . 6 (𝑔 = (𝑓𝐺) → ((𝑔𝑀) = 𝐶 ↔ ((𝑓𝐺)‘𝑀) = 𝐶))
98 fveq1 6087 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓𝐺)‘(𝑘 + 1)))
99 fveq1 6087 . . . . . . . . 9 (𝑔 = (𝑓𝐺) → (𝑔𝑘) = ((𝑓𝐺)‘𝑘))
10099oveq2d 6543 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑘𝐹(𝑔𝑘)) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
10198, 100eleq12d 2681 . . . . . . 7 (𝑔 = (𝑓𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
102101ralbidv 2968 . . . . . 6 (𝑔 = (𝑓𝐺) → (∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
10395, 97, 1023anbi123d 1390 . . . . 5 (𝑔 = (𝑓𝐺) → ((𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))))
10494, 103spcev 3272 . . . 4 (((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10526, 40, 86, 104syl3anc 1317 . . 3 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
106105exlimiv 1844 . 2 (∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10720, 106syl 17 1 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  wral 2895  Vcvv 3172  cdif 3536  c0 3873  𝒫 cpw 4107  {csn 4124  cmpt 4637   × cxp 5026  ccnv 5027  cres 5030  ccom 5032  suc csuc 5628  Fun wfun 5784  wf 5786  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  cmpt2 6529  ωcom 6934  reccrdg 7369  1c1 9793   + caddc 9795  cz 11210  cuz 11519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-dc 9128  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520
This theorem is referenced by:  axdc4uz  12600
  Copyright terms: Public domain W3C validator