MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uzlem Structured version   Visualization version   GIF version

Theorem axdc4uzlem 12996
Description: Lemma for axdc4uz 12997. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
axdc4uz.3 𝐴 ∈ V
axdc4uz.4 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
axdc4uz.5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
Assertion
Ref Expression
axdc4uzlem ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝑥,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘,𝑛,𝑥   𝑦,𝑔,𝑀,𝑘,𝑛,𝑥   𝑔,𝑍,𝑛,𝑥   𝑔,𝐺,𝑘,𝑛,𝑥   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑔,𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem axdc4uzlem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc4uz.1 . . . . . . . . . . 11 𝑀 ∈ ℤ
2 axdc4uz.4 . . . . . . . . . . 11 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
31, 2om2uzf1oi 12966 . . . . . . . . . 10 𝐺:ω–1-1-onto→(ℤ𝑀)
4 axdc4uz.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 f1oeq3 6291 . . . . . . . . . . 11 (𝑍 = (ℤ𝑀) → (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀))
73, 6mpbir 221 . . . . . . . . 9 𝐺:ω–1-1-onto𝑍
8 f1of 6299 . . . . . . . . 9 (𝐺:ω–1-1-onto𝑍𝐺:ω⟶𝑍)
97, 8ax-mp 5 . . . . . . . 8 𝐺:ω⟶𝑍
109ffvelrni 6522 . . . . . . 7 (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝑍)
11 fovrn 6970 . . . . . . 7 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺𝑛) ∈ 𝑍𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1210, 11syl3an2 1168 . . . . . 6 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
13123expb 1114 . . . . 5 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥𝐴)) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1413ralrimivva 3109 . . . 4 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
15 axdc4uz.5 . . . . 5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
1615fmpt2 7406 . . . 4 (∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
1714, 16sylib 208 . . 3 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
18 axdc4uz.3 . . . 4 𝐴 ∈ V
1918axdc4 9490 . . 3 ((𝐶𝐴𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
2017, 19sylan2 492 . 2 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
21 f1ocnv 6311 . . . . . . 7 (𝐺:ω–1-1-onto𝑍𝐺:𝑍1-1-onto→ω)
22 f1of 6299 . . . . . . 7 (𝐺:𝑍1-1-onto→ω → 𝐺:𝑍⟶ω)
237, 21, 22mp2b 10 . . . . . 6 𝐺:𝑍⟶ω
24 fco 6219 . . . . . 6 ((𝑓:ω⟶𝐴𝐺:𝑍⟶ω) → (𝑓𝐺):𝑍𝐴)
2523, 24mpan2 709 . . . . 5 (𝑓:ω⟶𝐴 → (𝑓𝐺):𝑍𝐴)
26253ad2ant1 1128 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓𝐺):𝑍𝐴)
27 uzid 11914 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
281, 27ax-mp 5 . . . . . . . 8 𝑀 ∈ (ℤ𝑀)
2928, 4eleqtrri 2838 . . . . . . 7 𝑀𝑍
30 fvco3 6438 . . . . . . 7 ((𝐺:𝑍⟶ω ∧ 𝑀𝑍) → ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀)))
3123, 29, 30mp2an 710 . . . . . 6 ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀))
321, 2om2uz0i 12960 . . . . . . . 8 (𝐺‘∅) = 𝑀
33 peano1 7251 . . . . . . . . 9 ∅ ∈ ω
34 f1ocnvfv 6698 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅))
357, 33, 34mp2an 710 . . . . . . . 8 ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅)
3632, 35ax-mp 5 . . . . . . 7 (𝐺𝑀) = ∅
3736fveq2i 6356 . . . . . 6 (𝑓‘(𝐺𝑀)) = (𝑓‘∅)
3831, 37eqtri 2782 . . . . 5 ((𝑓𝐺)‘𝑀) = (𝑓‘∅)
39 simp2 1132 . . . . 5 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓‘∅) = 𝐶)
4038, 39syl5eq 2806 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ((𝑓𝐺)‘𝑀) = 𝐶)
4123ffvelrni 6522 . . . . . . . . . 10 (𝑘𝑍 → (𝐺𝑘) ∈ ω)
4241adantl 473 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝐺𝑘) ∈ ω)
43 suceq 5951 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → suc 𝑚 = suc (𝐺𝑘))
4443fveq2d 6357 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (𝐺𝑘)))
45 id 22 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → 𝑚 = (𝐺𝑘))
46 fveq2 6353 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → (𝑓𝑚) = (𝑓‘(𝐺𝑘)))
4745, 46oveq12d 6832 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑚𝐻(𝑓𝑚)) = ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))))
4844, 47eleq12d 2833 . . . . . . . . . 10 (𝑚 = (𝐺𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) ↔ (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
4948rspcv 3445 . . . . . . . . 9 ((𝐺𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
5042, 49syl 17 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
514peano2uzs 11955 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
52 fvco3 6438 . . . . . . . . . . . 12 ((𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
5323, 51, 52sylancr 698 . . . . . . . . . . 11 (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
541, 2om2uzsuci 12961 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
5541, 54syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
56 f1ocnvfv2 6697 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto𝑍𝑘𝑍) → (𝐺‘(𝐺𝑘)) = 𝑘)
577, 56mpan 708 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝐺‘(𝐺𝑘)) = 𝑘)
5857oveq1d 6829 . . . . . . . . . . . . . 14 (𝑘𝑍 → ((𝐺‘(𝐺𝑘)) + 1) = (𝑘 + 1))
5955, 58eqtrd 2794 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = (𝑘 + 1))
60 peano2 7252 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → suc (𝐺𝑘) ∈ ω)
6141, 60syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → suc (𝐺𝑘) ∈ ω)
62 f1ocnvfv 6698 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝑘) ∈ ω) → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
637, 61, 62sylancr 698 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
6459, 63mpd 15 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘))
6564fveq2d 6357 . . . . . . . . . . 11 (𝑘𝑍 → (𝑓‘(𝐺‘(𝑘 + 1))) = (𝑓‘suc (𝐺𝑘)))
6653, 65eqtr2d 2795 . . . . . . . . . 10 (𝑘𝑍 → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
6766adantl 473 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
68 ffvelrn 6521 . . . . . . . . . . . 12 ((𝑓:ω⟶𝐴 ∧ (𝐺𝑘) ∈ ω) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
6941, 68sylan2 492 . . . . . . . . . . 11 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
70 fveq2 6353 . . . . . . . . . . . . 13 (𝑛 = (𝐺𝑘) → (𝐺𝑛) = (𝐺‘(𝐺𝑘)))
7170oveq1d 6829 . . . . . . . . . . . 12 (𝑛 = (𝐺𝑘) → ((𝐺𝑛)𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹𝑥))
72 oveq2 6822 . . . . . . . . . . . 12 (𝑥 = (𝑓‘(𝐺𝑘)) → ((𝐺‘(𝐺𝑘))𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
73 ovex 6842 . . . . . . . . . . . 12 ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) ∈ V
7471, 72, 15, 73ovmpt2 6962 . . . . . . . . . . 11 (((𝐺𝑘) ∈ ω ∧ (𝑓‘(𝐺𝑘)) ∈ 𝐴) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
7542, 69, 74syl2anc 696 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
76 fvco3 6438 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ω ∧ 𝑘𝑍) → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7723, 76mpan 708 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7877eqcomd 2766 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑓‘(𝐺𝑘)) = ((𝑓𝐺)‘𝑘))
7957, 78oveq12d 6832 . . . . . . . . . . 11 (𝑘𝑍 → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8079adantl 473 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8175, 80eqtrd 2794 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8267, 81eleq12d 2833 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8350, 82sylibd 229 . . . . . . 7 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8483impancom 455 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8584ralrimiv 3103 . . . . 5 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
86853adant2 1126 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
87 vex 3343 . . . . . 6 𝑓 ∈ V
88 rdgfun 7682 . . . . . . . . 9 Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀)
89 omex 8715 . . . . . . . . 9 ω ∈ V
90 resfunexg 6644 . . . . . . . . 9 ((Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V)
9188, 89, 90mp2an 710 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V
922, 91eqeltri 2835 . . . . . . 7 𝐺 ∈ V
9392cnvex 7279 . . . . . 6 𝐺 ∈ V
9487, 93coex 7284 . . . . 5 (𝑓𝐺) ∈ V
95 feq1 6187 . . . . . 6 (𝑔 = (𝑓𝐺) → (𝑔:𝑍𝐴 ↔ (𝑓𝐺):𝑍𝐴))
96 fveq1 6352 . . . . . . 7 (𝑔 = (𝑓𝐺) → (𝑔𝑀) = ((𝑓𝐺)‘𝑀))
9796eqeq1d 2762 . . . . . 6 (𝑔 = (𝑓𝐺) → ((𝑔𝑀) = 𝐶 ↔ ((𝑓𝐺)‘𝑀) = 𝐶))
98 fveq1 6352 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓𝐺)‘(𝑘 + 1)))
99 fveq1 6352 . . . . . . . . 9 (𝑔 = (𝑓𝐺) → (𝑔𝑘) = ((𝑓𝐺)‘𝑘))
10099oveq2d 6830 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑘𝐹(𝑔𝑘)) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
10198, 100eleq12d 2833 . . . . . . 7 (𝑔 = (𝑓𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
102101ralbidv 3124 . . . . . 6 (𝑔 = (𝑓𝐺) → (∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
10395, 97, 1023anbi123d 1548 . . . . 5 (𝑔 = (𝑓𝐺) → ((𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))))
10494, 103spcev 3440 . . . 4 (((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10526, 40, 86, 104syl3anc 1477 . . 3 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
106105exlimiv 2007 . 2 (∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10720, 106syl 17 1 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wral 3050  Vcvv 3340  cdif 3712  c0 4058  𝒫 cpw 4302  {csn 4321  cmpt 4881   × cxp 5264  ccnv 5265  cres 5268  ccom 5270  suc csuc 5886  Fun wfun 6043  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  cmpt2 6816  ωcom 7231  reccrdg 7675  1c1 10149   + caddc 10151  cz 11589  cuz 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-dc 9480  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900
This theorem is referenced by:  axdc4uz  12997
  Copyright terms: Public domain W3C validator