MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axext2 Structured version   Visualization version   GIF version

Theorem axext2 2495
Description: The Axiom of Extensionality (ax-ext 2494) restated so that it postulates the existence of a set 𝑧 given two arbitrary sets 𝑥 and 𝑦. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
axext2 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axext2
StepHypRef Expression
1 ax-ext 2494 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2 19.36v 1854 . 2 (∃𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
31, 2mpbir 219 1 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wal 1472  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-ex 1695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator