MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth6 Structured version   Visualization version   GIF version

Theorem axgroth6 10253
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set 𝑥, there exists a set 𝑦 containing 𝑥, the subsets of the members of 𝑦, the power sets of the members of 𝑦, and the subsets of 𝑦 of cardinality less than that of 𝑦. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
axgroth6 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axgroth6
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10249 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
2 biid 263 . . . 4 (𝑥𝑦𝑥𝑦)
3 pweq 4558 . . . . . . . . 9 (𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣)
43sseq1d 4001 . . . . . . . 8 (𝑧 = 𝑣 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑣𝑦))
54cbvralvw 3452 . . . . . . 7 (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑣𝑦 𝒫 𝑣𝑦)
6 ssid 3992 . . . . . . . . . 10 𝒫 𝑧 ⊆ 𝒫 𝑧
7 sseq2 3996 . . . . . . . . . . 11 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
87rspcev 3626 . . . . . . . . . 10 ((𝒫 𝑧𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑦 𝒫 𝑧𝑤)
96, 8mpan2 689 . . . . . . . . 9 (𝒫 𝑧𝑦 → ∃𝑤𝑦 𝒫 𝑧𝑤)
10 pweq 4558 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤)
1110sseq1d 4001 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝒫 𝑣𝑦 ↔ 𝒫 𝑤𝑦))
1211rspccv 3623 . . . . . . . . . . 11 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → 𝒫 𝑤𝑦))
13 pwss 4567 . . . . . . . . . . . 12 (𝒫 𝑤𝑦 ↔ ∀𝑣(𝑣𝑤𝑣𝑦))
14 vpwex 5281 . . . . . . . . . . . . 13 𝒫 𝑧 ∈ V
15 sseq1 3995 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑤 ↔ 𝒫 𝑧𝑤))
16 eleq1 2903 . . . . . . . . . . . . . 14 (𝑣 = 𝒫 𝑧 → (𝑣𝑦 ↔ 𝒫 𝑧𝑦))
1715, 16imbi12d 347 . . . . . . . . . . . . 13 (𝑣 = 𝒫 𝑧 → ((𝑣𝑤𝑣𝑦) ↔ (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
1814, 17spcv 3609 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑤𝑣𝑦) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
1913, 18sylbi 219 . . . . . . . . . . 11 (𝒫 𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
2012, 19syl6 35 . . . . . . . . . 10 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝑤𝑦 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑦)))
2120rexlimdv 3286 . . . . . . . . 9 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∃𝑤𝑦 𝒫 𝑧𝑤 → 𝒫 𝑧𝑦))
229, 21impbid2 228 . . . . . . . 8 (∀𝑣𝑦 𝒫 𝑣𝑦 → (𝒫 𝑧𝑦 ↔ ∃𝑤𝑦 𝒫 𝑧𝑤))
2322ralbidv 3200 . . . . . . 7 (∀𝑣𝑦 𝒫 𝑣𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
245, 23sylbi 219 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (∀𝑧𝑦 𝒫 𝑧𝑦 ↔ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2524pm5.32i 577 . . . . 5 ((∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
26 r19.26 3173 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦 𝒫 𝑧𝑦))
27 r19.26 3173 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑧𝑦 𝒫 𝑧𝑦 ∧ ∀𝑧𝑦𝑤𝑦 𝒫 𝑧𝑤))
2825, 26, 273bitr4i 305 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ↔ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤))
29 velpw 4547 . . . . . 6 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
30 impexp 453 . . . . . . . . 9 (((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
31 ssdomg 8558 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
3231elv 3502 . . . . . . . . . . 11 (𝑧𝑦𝑧𝑦)
3332pm4.71i 562 . . . . . . . . . 10 (𝑧𝑦 ↔ (𝑧𝑦𝑧𝑦))
3433imbi1i 352 . . . . . . . . 9 ((𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)) ↔ ((𝑧𝑦𝑧𝑦) → (¬ 𝑧𝑦𝑧𝑦)))
35 brsdom 8535 . . . . . . . . . . . 12 (𝑧𝑦 ↔ (𝑧𝑦 ∧ ¬ 𝑧𝑦))
3635imbi1i 352 . . . . . . . . . . 11 ((𝑧𝑦𝑧𝑦) ↔ ((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦))
37 impexp 453 . . . . . . . . . . 11 (((𝑧𝑦 ∧ ¬ 𝑧𝑦) → 𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3836, 37bitri 277 . . . . . . . . . 10 ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
3938imbi2i 338 . . . . . . . . 9 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦))))
4030, 34, 393bitr4ri 306 . . . . . . . 8 ((𝑧𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (¬ 𝑧𝑦𝑧𝑦)))
4140pm5.74ri 274 . . . . . . 7 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (¬ 𝑧𝑦𝑧𝑦)))
42 pm4.64 845 . . . . . . 7 ((¬ 𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦))
4341, 42syl6bb 289 . . . . . 6 (𝑧𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4429, 43sylbi 219 . . . . 5 (𝑧 ∈ 𝒫 𝑦 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
4544ralbiia 3167 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
462, 28, 453anbi123i 1151 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
4746exbii 1847 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)))
481, 47mpbir 233 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ 𝒫 𝑧𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1534   = wceq 1536  wex 1779  wcel 2113  wral 3141  wrex 3142  Vcvv 3497  wss 3939  𝒫 cpw 4542   class class class wbr 5069  cen 8509  cdom 8510  csdm 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-groth 10248
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-dom 8514  df-sdom 8515
This theorem is referenced by:  grothomex  10254  grothac  10255
  Copyright terms: Public domain W3C validator