MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axial Structured version   Visualization version   GIF version

Theorem axial 2733
Description: The setvar 𝑥 is not free in 𝑥𝜑 (intuitionistic logic axiom ax-ial). (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axial (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem axial
StepHypRef Expression
1 hba1 2298 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196
This theorem depends on definitions:  df-bi 197  df-or 384  df-ex 1854  df-nf 1859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator