MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 25738
Description: Lemma for axlowdim 25741. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem17.3 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 𝑌 ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11673 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21ad2antrr 761 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈ (ℤ‘2))
3 fzss2 12323 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (1...2) ⊆ (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆ (1...𝑁))
5 simpr 477 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2))
64, 5sseldd 3584 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁))
7 fznuz 12363 . . . . . . . . . . 11 (𝑖 ∈ (1...2) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
87adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
9 3z 11354 . . . . . . . . . . . . . 14 3 ∈ ℤ
10 uzid 11646 . . . . . . . . . . . . . 14 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (ℤ‘3)
12 df-3 11024 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6151 . . . . . . . . . . . . 13 (ℤ‘3) = (ℤ‘(2 + 1))
1411, 13eleqtri 2696 . . . . . . . . . . . 12 3 ∈ (ℤ‘(2 + 1))
15 eleq1 2686 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 ∈ (ℤ‘(2 + 1)) ↔ 3 ∈ (ℤ‘(2 + 1))))
1614, 15mpbiri 248 . . . . . . . . . . 11 (𝑖 = 3 → 𝑖 ∈ (ℤ‘(2 + 1)))
1716necon3bi 2816 . . . . . . . . . 10 𝑖 ∈ (ℤ‘(2 + 1)) → 𝑖 ≠ 3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2019axlowdimlem9 25730 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
216, 18, 20syl2anc 692 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = 0)
22 elfzuz 12280 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (ℤ‘2))
2322ad2antlr 762 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈ (ℤ‘2))
24 eluzp1p1 11657 . . . . . . . . . . . . 13 (𝐼 ∈ (ℤ‘2) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
26 uzss 11652 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2827, 8ssneldd 3586 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)))
29 eluzelz 11641 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (𝐼 + 1) ∈ ℤ)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ)
31 uzid 11646 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ ℤ → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
33 eleq1 2686 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1))))
3432, 33syl5ibrcom 237 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ‘(𝐼 + 1))))
3534necon3bd 2804 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
3837axlowdimlem12 25733 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
396, 36, 38syl2anc 692 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄𝑖) = 0)
4021, 39eqtr4d 2658 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = (𝑄𝑖))
4140oveq1d 6619 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − (𝐴𝑖)))
4241oveq1d 6619 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = (((𝑄𝑖) − (𝐴𝑖))↑2))
4342sumeq2dv 14367 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2))
4419, 37axlowdimlem16 25737 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
4645fveq1i 6149 . . . . . . . . . . . 12 (𝐴𝑖) = (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖)
47 axlowdimlem2 25723 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = ∅
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 𝑌 ∈ ℝ
5048, 49axlowdimlem4 25725 . . . . . . . . . . . . . . 15 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ
51 ffn 6002 . . . . . . . . . . . . . . 15 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2)
53 axlowdimlem1 25722 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
54 ffn 6002 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
56 fvun2 6227 . . . . . . . . . . . . . 14 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5752, 55, 56mp3an12 1411 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5847, 57mpan 705 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5946, 58syl5eq 2667 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = (((3...𝑁) × {0})‘𝑖))
60 c0ex 9978 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 6423 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0)
6259, 61eqtrd 2655 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = 0)
6362adantl 482 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴𝑖) = 0)
6463oveq2d 6620 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑃𝑖) − 0))
6519axlowdimlem7 25728 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
6665ad2antrr 761 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
67 3nn 11130 . . . . . . . . . . . . . 14 3 ∈ ℕ
68 nnuz 11667 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
6967, 68eleqtri 2696 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
70 fzss1 12322 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
7271sseli 3579 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
7372adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
74 fveecn 25682 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
7566, 73, 74syl2anc 692 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
7675subid1d 10325 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − 0) = (𝑃𝑖))
7764, 76eqtrd 2655 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = (𝑃𝑖))
7877oveq1d 6619 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = ((𝑃𝑖)↑2))
7978sumeq2dv 14367 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2))
8063oveq2d 6620 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − 0))
81 eluzge3nn 11674 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
82 2eluzge1 11678 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
83 fzss1 12322 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
8584sseli 3579 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8637axlowdimlem10 25731 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8781, 85, 86syl2an 494 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
88 fveecn 25682 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8987, 72, 88syl2an 494 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
9089subid1d 10325 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − 0) = (𝑄𝑖))
9180, 90eqtrd 2655 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = (𝑄𝑖))
9291oveq1d 6619 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) = ((𝑄𝑖)↑2))
9392sumeq2dv 14367 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
9444, 79, 933eqtr4d 2665 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
9543, 94oveq12d 6622 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩ (3...𝑁)) = ∅)
97 eluzelre 11642 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
98 eluzle 11644 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
99 2re 11034 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 11038 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 11139 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 10104 . . . . . . . . . . 11 2 ≤ 3
103 letr 10075 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
10499, 100, 103mp3an12 1411 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
105102, 104mpani 711 . . . . . . . . . 10 (𝑁 ∈ ℝ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 2 ≤ 𝑁)
107 1le2 11185 . . . . . . . . 9 1 ≤ 2
108106, 107jctil 559 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
109108adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
110 eluzelz 11641 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
111110adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
112 2z 11353 . . . . . . . . 9 2 ∈ ℤ
113 1z 11351 . . . . . . . . 9 1 ∈ ℤ
114 elfz 12274 . . . . . . . . 9 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
115112, 113, 114mp3an12 1411 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
117109, 116mpbird 247 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
118 fzsplit 12309 . . . . . 6 (2 ∈ (1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
12012oveq1i 6614 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 3742 . . . . 5 ((1...2) ∪ (3...𝑁)) = ((1...2) ∪ ((2 + 1)...𝑁))
122119, 121syl6eqr 2673 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
123 fzfid 12712 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin)
12465ad2antrr 761 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
125124, 74sylancom 700 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
12648, 49axlowdimlem5 25726 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
12745, 126syl5eqel 2702 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝐴 ∈ (𝔼‘𝑁))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝐴 ∈ (𝔼‘𝑁))
129128ad2antrr 761 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
130 fveecn 25682 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
131129, 130sylancom 700 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
132125, 131subcld 10336 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) ∈ ℂ)
133132sqcld 12946 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13496, 122, 123, 133fsumsplit 14404 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)))
13587, 88sylan 488 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
136135, 131subcld 10336 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) ∈ ℂ)
137136sqcld 12946 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13896, 122, 123, 137fsumsplit 14404 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
13995, 134, 1383eqtr4d 2665 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
14065adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁))
141128adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁))
142 brcgr 25680 . . 3 (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
143140, 141, 87, 141, 142syl22anc 1324 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
144139, 143mpbird 247 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148  {cpr 4150  cop 4154   class class class wbr 4613   × cxp 5072   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883  cle 10019  cmin 10210  -cneg 10211  cn 10964  2c2 11014  3c3 11015  cz 11321  cuz 11631  ...cfz 12268  cexp 12800  Σcsu 14350  𝔼cee 25668  Cgrccgr 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-ee 25671  df-cgr 25673
This theorem is referenced by:  axlowdim  25741
  Copyright terms: Public domain W3C validator