MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem7 Structured version   Visualization version   GIF version

Theorem axlowdimlem7 25735
Description: Lemma for axlowdim 25748. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem7 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem7
StepHypRef Expression
1 axlowdimlem7.1 . 2 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2 eqid 2621 . . . . . . . 8 {⟨3, -1⟩} = {⟨3, -1⟩}
3 3ex 11043 . . . . . . . . 9 3 ∈ V
4 negex 10226 . . . . . . . . 9 -1 ∈ V
53, 4fsn 6359 . . . . . . . 8 ({⟨3, -1⟩}:{3}⟶{-1} ↔ {⟨3, -1⟩} = {⟨3, -1⟩})
62, 5mpbir 221 . . . . . . 7 {⟨3, -1⟩}:{3}⟶{-1}
7 neg1rr 11072 . . . . . . . 8 -1 ∈ ℝ
8 snssi 4310 . . . . . . . 8 (-1 ∈ ℝ → {-1} ⊆ ℝ)
97, 8ax-mp 5 . . . . . . 7 {-1} ⊆ ℝ
10 fss 6015 . . . . . . 7 (({⟨3, -1⟩}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {⟨3, -1⟩}:{3}⟶ℝ)
116, 9, 10mp2an 707 . . . . . 6 {⟨3, -1⟩}:{3}⟶ℝ
12 0re 9987 . . . . . . 7 0 ∈ ℝ
1312fconst6 6054 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ
1411, 13pm3.2i 471 . . . . 5 ({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ)
15 disjdif 4014 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
16 fun2 6026 . . . . 5 ((({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ)
1714, 15, 16mp2an 707 . . . 4 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ
18 eluzle 11647 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
19 1le3 11191 . . . . . . . . 9 1 ≤ 3
2018, 19jctil 559 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁))
21 eluzelz 11644 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
22 3z 11357 . . . . . . . . . 10 3 ∈ ℤ
23 1z 11354 . . . . . . . . . 10 1 ∈ ℤ
24 elfz 12277 . . . . . . . . . 10 ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2522, 23, 24mp3an12 1411 . . . . . . . . 9 (𝑁 ∈ ℤ → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2621, 25syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2720, 26mpbird 247 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ∈ (1...𝑁))
2827snssd 4311 . . . . . 6 (𝑁 ∈ (ℤ‘3) → {3} ⊆ (1...𝑁))
29 undif 4023 . . . . . 6 ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3028, 29sylib 208 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3130feq2d 5990 . . . 4 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3217, 31mpbii 223 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)
33 eluzge3nn 11677 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
34 elee 25681 . . . 4 (𝑁 ∈ ℕ → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3533, 34syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3632, 35mpbird 247 . 2 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
371, 36syl5eqel 2702 1 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cdif 3553  cun 3554  cin 3555  wss 3556  c0 3893  {csn 4150  cop 4156   class class class wbr 4615   × cxp 5074  wf 5845  cfv 5849  (class class class)co 6607  cr 9882  0cc0 9883  1c1 9884  cle 10022  -cneg 10214  cn 10967  3c3 11018  cz 11324  cuz 11634  ...cfz 12271  𝔼cee 25675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-z 11325  df-uz 11635  df-fz 12272  df-ee 25678
This theorem is referenced by:  axlowdimlem15  25743  axlowdimlem16  25744  axlowdimlem17  25745
  Copyright terms: Public domain W3C validator