MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   GIF version

Theorem axpasch 25539
Description: The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝑁

Proof of Theorem axpasch
Dummy variables 𝑖 𝑞 𝑟 𝑠 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 25538 . . . . . . . . . 10 ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
213ad2ant3 1076 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
3 simp1 1053 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑞 = ((1 − 𝑟) · (1 − 𝑡)))
43oveq1d 6542 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑞 · (𝐴𝑖)) = (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)))
54eqcomd 2615 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = (𝑞 · (𝐴𝑖)))
6 simp2 1054 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑟 = ((1 − 𝑞) · (1 − 𝑠)))
76oveq1d 6542 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑟 · (𝐵𝑖)) = (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)))
85, 7oveq12d 6545 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))))
9 simp3 1055 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))
109oveq1d 6542 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = (((1 − 𝑞) · 𝑠) · (𝐶𝑖)))
118, 10oveq12d 6545 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
12113ad2ant3 1076 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
1312adantr 479 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
14 1re 9895 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
15 simpl2l 1106 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
16 0re 9896 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
1716, 14elicc2i 12066 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ (0[,]1) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟 ≤ 1))
1817simp1bi 1068 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ (0[,]1) → 𝑟 ∈ ℝ)
1915, 18syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
20 resubcl 10196 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (1 − 𝑟) ∈ ℝ)
2114, 19, 20sylancr 693 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
2221recnd 9924 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℂ)
23 simp13l 1168 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑡 ∈ (0[,]1))
2423adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
2516, 14elicc2i 12066 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2625simp1bi 1068 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2724, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
28 resubcl 10196 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
2914, 27, 28sylancr 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
30 simp121 1185 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐴 ∈ (𝔼‘𝑁))
31 fveere 25499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3230, 31sylan 486 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3329, 32remulcld 9926 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℝ)
3433recnd 9924 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℂ)
35 simp123 1187 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐶 ∈ (𝔼‘𝑁))
36 fveere 25499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3735, 36sylan 486 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3827, 37remulcld 9926 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
3938recnd 9924 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4022, 34, 39adddid 9920 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4129recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
4232recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4322, 41, 42mulassd 9919 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = ((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))))
4427recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
45 fveecn 25500 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4635, 45sylan 486 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4722, 44, 46mulassd 9919 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = ((1 − 𝑟) · (𝑡 · (𝐶𝑖))))
4843, 47oveq12d 6545 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4940, 48eqtr4d 2646 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
5049oveq1d 6542 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))))
5121, 29remulcld 9926 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (1 − 𝑡)) ∈ ℝ)
5251, 32remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℝ)
5352recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℂ)
5421, 27remulcld 9926 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · 𝑡) ∈ ℝ)
5554, 37remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℝ)
5655recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℂ)
57 simp122 1186 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐵 ∈ (𝔼‘𝑁))
58 fveere 25499 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5957, 58sylan 486 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
6019, 59remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℝ)
6160recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℂ)
6253, 56, 61add32d 10114 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
6350, 62eqtrd 2643 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
64 simpl2r 1107 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ (0[,]1))
6516, 14elicc2i 12066 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (0[,]1) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞𝑞 ≤ 1))
6665simp1bi 1068 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ (0[,]1) → 𝑞 ∈ ℝ)
6764, 66syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ ℝ)
68 resubcl 10196 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (1 − 𝑞) ∈ ℝ)
6914, 67, 68sylancr 693 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℝ)
70 simp13r 1169 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑠 ∈ (0[,]1))
7170adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1))
7216, 14elicc2i 12066 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤ 𝑠𝑠 ≤ 1))
7372simp1bi 1068 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℝ)
7471, 73syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
75 resubcl 10196 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (1 − 𝑠) ∈ ℝ)
7614, 74, 75sylancr 693 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℝ)
7776, 59remulcld 9926 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℝ)
7869, 77remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℝ)
7978recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℂ)
8074, 37remulcld 9926 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℝ)
8169, 80remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℝ)
8281recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℂ)
8367, 32remulcld 9926 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℝ)
8483recnd 9924 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℂ)
8579, 82, 84add32d 10114 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8669recnd 9924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℂ)
8777recnd 9924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℂ)
8880recnd 9924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℂ)
8986, 87, 88adddid 9920 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
9089oveq1d 6542 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
9176recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℂ)
9259recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
9386, 91, 92mulassd 9919 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)) = ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))))
9493oveq2d 6543 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))))
9584, 79addcomd 10089 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9694, 95eqtrd 2643 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9774recnd 9924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
9886, 97, 46mulassd 9919 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · 𝑠) · (𝐶𝑖)) = ((1 − 𝑞) · (𝑠 · (𝐶𝑖))))
9996, 98oveq12d 6545 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
10085, 90, 993eqtr4d 2653 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
10113, 63, 1003eqtr4d 2653 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
102101ralrimiva 2948 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
1031023expia 1258 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
104103anassrs 677 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
105104reximdva 2999 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
106105reximdva 2999 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
1072, 106mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
108 simplrl 795 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
109108, 18syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
11014, 109, 20sylancr 693 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
111 simpl3l 1108 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝑡 ∈ (0[,]1))
112111adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
113112, 26syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
11414, 113, 28sylancr 693 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
115 simpl21 1131 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐴 ∈ (𝔼‘𝑁))
116 fveere 25499 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
117115, 116sylan 486 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
118114, 117remulcld 9926 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑘)) ∈ ℝ)
119 simpl23 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐶 ∈ (𝔼‘𝑁))
120 fveere 25499 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
121119, 120sylan 486 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
122113, 121remulcld 9926 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑘)) ∈ ℝ)
123118, 122readdcld 9925 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) ∈ ℝ)
124110, 123remulcld 9926 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) ∈ ℝ)
125 simpl22 1132 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐵 ∈ (𝔼‘𝑁))
126 fveere 25499 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
127125, 126sylan 486 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
128109, 127remulcld 9926 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑘)) ∈ ℝ)
129124, 128readdcld 9925 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
130129ralrimiva 2948 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
131130anassrs 677 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
132 simpll1 1092 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
133 mptelee 25493 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
134132, 133syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
135131, 134mpbird 245 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁))
136 fveq1 6087 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖))
137 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
138137oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐴𝑘)) = ((1 − 𝑡) · (𝐴𝑖)))
139 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
140139oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
141138, 140oveq12d 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
142141oveq2d 6543 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
143 fveq2 6088 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
144143oveq2d 6543 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑟 · (𝐵𝑘)) = (𝑟 · (𝐵𝑖)))
145142, 144oveq12d 6545 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
146 eqid 2609 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))
147 ovex 6555 . . . . . . . . . . . . . . . . . . 19 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∈ V
148145, 146, 147fvmpt 6176 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
149136, 148sylan9eq 2663 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
150149eqeq1d 2611 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
151149eqeq1d 2611 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
152150, 151anbi12d 742 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
153 eqid 2609 . . . . . . . . . . . . . . . 16 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))
154153biantrur 525 . . . . . . . . . . . . . . 15 ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
155152, 154syl6bbr 276 . . . . . . . . . . . . . 14 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
156155ralbidva 2967 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
157156rspcev 3281 . . . . . . . . . . . 12 (((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
158157ex 448 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
159135, 158syl 17 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
160159reximdva 2999 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
161160reximdva 2999 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
162107, 161mpd 15 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
163 rexcom 3079 . . . . . . . . 9 (∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
164163rexbii 3022 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
165 rexcom 3079 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
166164, 165bitri 262 . . . . . . 7 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
167162, 166sylib 206 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
168 oveq2 6535 . . . . . . . . . . . . 13 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((1 − 𝑟) · (𝐷𝑖)) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
169168oveq1d 6542 . . . . . . . . . . . 12 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
170169eqeq2d 2619 . . . . . . . . . . 11 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
171 oveq2 6535 . . . . . . . . . . . . 13 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((1 − 𝑞) · (𝐸𝑖)) = ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
172171oveq1d 6542 . . . . . . . . . . . 12 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
173172eqeq2d 2619 . . . . . . . . . . 11 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
174170, 173bi2anan9 912 . . . . . . . . . 10 (((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
175174ralimi 2935 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
176 ralbi 3049 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
177175, 176syl 17 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
178177rexbidv 3033 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
1791782rexbidv 3038 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
180167, 179syl5ibrcom 235 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1811803expia 1258 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))))
182181rexlimdvv 3018 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1831823adant3 1073 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
184 simp3l 1081 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
185 simp21 1086 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
186 simp23 1088 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
187 brbtwn 25497 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
188184, 185, 186, 187syl3anc 1317 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
189 simp3r 1082 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
190 simp22 1087 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
191 brbtwn 25497 . . . . 5 ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
192189, 190, 186, 191syl3anc 1317 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
193188, 192anbi12d 742 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
194 r19.26 3045 . . . . 5 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
1951942rexbii 3023 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
196 reeanv 3085 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
197195, 196bitri 262 . . 3 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
198193, 197syl6bbr 276 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
199 simpr 475 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
200 simpl3l 1108 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
201 simpl22 1132 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
202 brbtwn 25497 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
203199, 200, 201, 202syl3anc 1317 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
204 simpl3r 1109 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
205 simpl21 1131 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
206 brbtwn 25497 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
207199, 204, 205, 206syl3anc 1317 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
208203, 207anbi12d 742 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
209 r19.26 3045 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
2102092rexbii 3023 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
211 reeanv 3085 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
212210, 211bitri 262 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
213208, 212syl6bbr 276 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
214213rexbidva 3030 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
215183, 198, 2143imtr4d 281 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  cop 4130   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cle 9931  cmin 10117  cn 10867  [,]cicc 12005  ...cfz 12152  𝔼cee 25486   Btwn cbtwn 25487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-z 11211  df-uz 11520  df-icc 12009  df-fz 12153  df-ee 25489  df-btwn 25490
This theorem is referenced by:  eengtrkg  25583  btwncomim  31096  btwnswapid  31100  btwnintr  31102  btwnexch3  31103  trisegint  31111  btwnconn1lem13  31182
  Copyright terms: Public domain W3C validator