MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpaschlem Structured version   Visualization version   GIF version

Theorem axpaschlem 25865
Description: Lemma for axpasch 25866. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.)
Assertion
Ref Expression
axpaschlem ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
Distinct variable groups:   𝑇,𝑝,𝑟   𝑆,𝑝,𝑟

Proof of Theorem axpaschlem
StepHypRef Expression
1 1re 10077 . . . . . . . 8 1 ∈ ℝ
2 0re 10078 . . . . . . . . . . 11 0 ∈ ℝ
32, 1elicc2i 12277 . . . . . . . . . 10 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
43simp1bi 1096 . . . . . . . . 9 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
54ad2antrl 764 . . . . . . . 8 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
6 resubcl 10383 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
71, 5, 6sylancr 696 . . . . . . 7 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
87recnd 10106 . . . . . 6 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
98mul02d 10272 . . . . 5 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 · (1 − 𝑇)) = 0)
109eqcomd 2657 . . . 4 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 = (0 · (1 − 𝑇)))
112, 1elicc2i 12277 . . . . . . . . . 10 (𝑆 ∈ (0[,]1) ↔ (𝑆 ∈ ℝ ∧ 0 ≤ 𝑆𝑆 ≤ 1))
1211simp1bi 1096 . . . . . . . . 9 (𝑆 ∈ (0[,]1) → 𝑆 ∈ ℝ)
1312ad2antll 765 . . . . . . . 8 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ∈ ℝ)
14 resubcl 10383 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (1 − 𝑆) ∈ ℝ)
151, 13, 14sylancr 696 . . . . . . 7 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) ∈ ℝ)
1615recnd 10106 . . . . . 6 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) ∈ ℂ)
1716mulid2d 10096 . . . . 5 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 · (1 − 𝑆)) = (1 − 𝑆))
18 oveq2 6698 . . . . . . 7 (𝑆 = 0 → (1 − 𝑆) = (1 − 0))
1918adantr 480 . . . . . 6 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) = (1 − 0))
20 1m0e1 11169 . . . . . 6 (1 − 0) = 1
2119, 20syl6eq 2701 . . . . 5 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) = 1)
2217, 21eqtr2d 2686 . . . 4 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 1 = (1 · (1 − 𝑆)))
235recnd 10106 . . . . . 6 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
2423mul02d 10272 . . . . 5 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 · 𝑇) = 0)
25 oveq2 6698 . . . . . . 7 (𝑆 = 0 → (1 · 𝑆) = (1 · 0))
2625adantr 480 . . . . . 6 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 · 𝑆) = (1 · 0))
27 ax-1cn 10032 . . . . . . 7 1 ∈ ℂ
2827mul01i 10264 . . . . . 6 (1 · 0) = 0
2926, 28syl6eq 2701 . . . . 5 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 · 𝑆) = 0)
3024, 29eqtr4d 2688 . . . 4 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 · 𝑇) = (1 · 𝑆))
31 1elunit 12329 . . . . 5 1 ∈ (0[,]1)
32 0elunit 12328 . . . . 5 0 ∈ (0[,]1)
33 oveq2 6698 . . . . . . . . . 10 (𝑟 = 1 → (1 − 𝑟) = (1 − 1))
34 1m1e0 11127 . . . . . . . . . 10 (1 − 1) = 0
3533, 34syl6eq 2701 . . . . . . . . 9 (𝑟 = 1 → (1 − 𝑟) = 0)
3635oveq1d 6705 . . . . . . . 8 (𝑟 = 1 → ((1 − 𝑟) · (1 − 𝑇)) = (0 · (1 − 𝑇)))
3736eqeq2d 2661 . . . . . . 7 (𝑟 = 1 → (𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ↔ 𝑝 = (0 · (1 − 𝑇))))
38 eqeq1 2655 . . . . . . 7 (𝑟 = 1 → (𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ↔ 1 = ((1 − 𝑝) · (1 − 𝑆))))
3935oveq1d 6705 . . . . . . . 8 (𝑟 = 1 → ((1 − 𝑟) · 𝑇) = (0 · 𝑇))
4039eqeq1d 2653 . . . . . . 7 (𝑟 = 1 → (((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆) ↔ (0 · 𝑇) = ((1 − 𝑝) · 𝑆)))
4137, 38, 403anbi123d 1439 . . . . . 6 (𝑟 = 1 → ((𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)) ↔ (𝑝 = (0 · (1 − 𝑇)) ∧ 1 = ((1 − 𝑝) · (1 − 𝑆)) ∧ (0 · 𝑇) = ((1 − 𝑝) · 𝑆))))
42 eqeq1 2655 . . . . . . 7 (𝑝 = 0 → (𝑝 = (0 · (1 − 𝑇)) ↔ 0 = (0 · (1 − 𝑇))))
43 oveq2 6698 . . . . . . . . . 10 (𝑝 = 0 → (1 − 𝑝) = (1 − 0))
4443, 20syl6eq 2701 . . . . . . . . 9 (𝑝 = 0 → (1 − 𝑝) = 1)
4544oveq1d 6705 . . . . . . . 8 (𝑝 = 0 → ((1 − 𝑝) · (1 − 𝑆)) = (1 · (1 − 𝑆)))
4645eqeq2d 2661 . . . . . . 7 (𝑝 = 0 → (1 = ((1 − 𝑝) · (1 − 𝑆)) ↔ 1 = (1 · (1 − 𝑆))))
4744oveq1d 6705 . . . . . . . 8 (𝑝 = 0 → ((1 − 𝑝) · 𝑆) = (1 · 𝑆))
4847eqeq2d 2661 . . . . . . 7 (𝑝 = 0 → ((0 · 𝑇) = ((1 − 𝑝) · 𝑆) ↔ (0 · 𝑇) = (1 · 𝑆)))
4942, 46, 483anbi123d 1439 . . . . . 6 (𝑝 = 0 → ((𝑝 = (0 · (1 − 𝑇)) ∧ 1 = ((1 − 𝑝) · (1 − 𝑆)) ∧ (0 · 𝑇) = ((1 − 𝑝) · 𝑆)) ↔ (0 = (0 · (1 − 𝑇)) ∧ 1 = (1 · (1 − 𝑆)) ∧ (0 · 𝑇) = (1 · 𝑆))))
5041, 49rspc2ev 3355 . . . . 5 ((1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1) ∧ (0 = (0 · (1 − 𝑇)) ∧ 1 = (1 · (1 − 𝑆)) ∧ (0 · 𝑇) = (1 · 𝑆))) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
5131, 32, 50mp3an12 1454 . . . 4 ((0 = (0 · (1 − 𝑇)) ∧ 1 = (1 · (1 − 𝑆)) ∧ (0 · 𝑇) = (1 · 𝑆)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
5210, 22, 30, 51syl3anc 1366 . . 3 ((𝑆 = 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
5352ex 449 . 2 (𝑆 = 0 → ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆))))
544ad2antrl 764 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
5512ad2antll 765 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ∈ ℝ)
5655, 54remulcld 10108 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ∈ ℝ)
5754, 56resubcld 10496 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 − (𝑆 · 𝑇)) ∈ ℝ)
5855, 54readdcld 10107 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 + 𝑇) ∈ ℝ)
5958, 56resubcld 10496 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℝ)
60 1red 10093 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 1 ∈ ℝ)
613simp2bi 1097 . . . . . . . . . . . 12 (𝑇 ∈ (0[,]1) → 0 ≤ 𝑇)
6261ad2antrl 764 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ 𝑇)
6311simp3bi 1098 . . . . . . . . . . . 12 (𝑆 ∈ (0[,]1) → 𝑆 ≤ 1)
6463ad2antll 765 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ≤ 1)
6555, 60, 54, 62, 64lemul1ad 11001 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ≤ (1 · 𝑇))
6654recnd 10106 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
6766mulid2d 10096 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 · 𝑇) = 𝑇)
6865, 67breqtrd 4711 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ≤ 𝑇)
6911simp2bi 1097 . . . . . . . . . . . 12 (𝑆 ∈ (0[,]1) → 0 ≤ 𝑆)
7069ad2antll 765 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ 𝑆)
71 simpl 472 . . . . . . . . . . 11 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ≠ 0)
7255, 70, 71ne0gt0d 10212 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 < 𝑆)
7355, 54ltaddpos2d 10650 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 < 𝑆𝑇 < (𝑆 + 𝑇)))
7472, 73mpbid 222 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 < (𝑆 + 𝑇))
7556, 54, 58, 68, 74lelttrd 10233 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) < (𝑆 + 𝑇))
7656, 58posdifd 10652 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · 𝑇) < (𝑆 + 𝑇) ↔ 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
7775, 76mpbid 222 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇)))
7877gt0ne0d 10630 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 + 𝑇) − (𝑆 · 𝑇)) ≠ 0)
7957, 59, 78redivcld 10891 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ ℝ)
8054, 56subge0d 10655 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 ≤ (𝑇 − (𝑆 · 𝑇)) ↔ (𝑆 · 𝑇) ≤ 𝑇))
8168, 80mpbird 247 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ (𝑇 − (𝑆 · 𝑇)))
82 divge0 10930 . . . . . 6 ((((𝑇 − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 ≤ (𝑇 − (𝑆 · 𝑇))) ∧ (((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) → 0 ≤ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
8357, 81, 59, 77, 82syl22anc 1367 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
8454, 58, 74ltled 10223 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ≤ (𝑆 + 𝑇))
8554, 58, 56, 84lesub1dd 10681 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 − (𝑆 · 𝑇)) ≤ ((𝑆 + 𝑇) − (𝑆 · 𝑇)))
8659recnd 10106 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℂ)
8786mulid2d 10096 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑆 + 𝑇) − (𝑆 · 𝑇)))
8885, 87breqtrrd 4713 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
89 ledivmul2 10940 . . . . . . 7 (((𝑇 − (𝑆 · 𝑇)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) → (((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1 ↔ (𝑇 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
9057, 60, 59, 77, 89syl112anc 1370 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1 ↔ (𝑇 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
9188, 90mpbird 247 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1)
922, 1elicc2i 12277 . . . . 5 (((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1) ↔ (((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ ℝ ∧ 0 ≤ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∧ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1))
9379, 83, 91, 92syl3anbrc 1265 . . . 4 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1))
9455, 56resubcld 10496 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 − (𝑆 · 𝑇)) ∈ ℝ)
9594, 59, 78redivcld 10891 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ ℝ)
963simp3bi 1098 . . . . . . . . . 10 (𝑇 ∈ (0[,]1) → 𝑇 ≤ 1)
9796ad2antrl 764 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑇 ≤ 1)
9854, 60, 55, 70, 97lemul2ad 11002 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ≤ (𝑆 · 1))
9955recnd 10106 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ∈ ℂ)
10099mulid1d 10095 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 1) = 𝑆)
10198, 100breqtrd 4711 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ≤ 𝑆)
10255, 56subge0d 10655 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 ≤ (𝑆 − (𝑆 · 𝑇)) ↔ (𝑆 · 𝑇) ≤ 𝑆))
103101, 102mpbird 247 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ (𝑆 − (𝑆 · 𝑇)))
104 divge0 10930 . . . . . 6 ((((𝑆 − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 ≤ (𝑆 − (𝑆 · 𝑇))) ∧ (((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) → 0 ≤ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
10594, 103, 59, 77, 104syl22anc 1367 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 0 ≤ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
10655, 54addge01d 10653 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (0 ≤ 𝑇𝑆 ≤ (𝑆 + 𝑇)))
10762, 106mpbid 222 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → 𝑆 ≤ (𝑆 + 𝑇))
10855, 58, 56, 107lesub1dd 10681 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 − (𝑆 · 𝑇)) ≤ ((𝑆 + 𝑇) − (𝑆 · 𝑇)))
109108, 87breqtrrd 4713 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
110 ledivmul2 10940 . . . . . . 7 (((𝑆 − (𝑆 · 𝑇)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝑆 + 𝑇) − (𝑆 · 𝑇)) ∈ ℝ ∧ 0 < ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) → (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1 ↔ (𝑆 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
11194, 60, 59, 77, 110syl112anc 1370 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1 ↔ (𝑆 − (𝑆 · 𝑇)) ≤ (1 · ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
112109, 111mpbird 247 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1)
1132, 1elicc2i 12277 . . . . 5 (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1) ↔ (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ ℝ ∧ 0 ≤ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∧ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ≤ 1))
11495, 105, 112, 113syl3anbrc 1265 . . . 4 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1))
1151, 54, 6sylancr 696 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
116115recnd 10106 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
11799, 116, 86, 78div23d 10876 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · (1 − 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · (1 − 𝑇)))
118 subdi 10501 . . . . . . . . 9 ((𝑆 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑆 · (1 − 𝑇)) = ((𝑆 · 1) − (𝑆 · 𝑇)))
11927, 118mp3an2 1452 . . . . . . . 8 ((𝑆 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑆 · (1 − 𝑇)) = ((𝑆 · 1) − (𝑆 · 𝑇)))
12099, 66, 119syl2anc 694 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · (1 − 𝑇)) = ((𝑆 · 1) − (𝑆 · 𝑇)))
121100oveq1d 6705 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · 1) − (𝑆 · 𝑇)) = (𝑆 − (𝑆 · 𝑇)))
122120, 121eqtrd 2685 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · (1 − 𝑇)) = (𝑆 − (𝑆 · 𝑇)))
123122oveq1d 6705 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · (1 − 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
12457recnd 10106 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 − (𝑆 · 𝑇)) ∈ ℂ)
12586, 124, 86, 78divsubdird 10878 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑇 − (𝑆 · 𝑇))) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
12658recnd 10106 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 + 𝑇) ∈ ℂ)
12756recnd 10106 . . . . . . . . . 10 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) ∈ ℂ)
128126, 66, 127nnncan2d 10465 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑇 − (𝑆 · 𝑇))) = ((𝑆 + 𝑇) − 𝑇))
12999, 66pncand 10431 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 + 𝑇) − 𝑇) = 𝑆)
130128, 129eqtrd 2685 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑇 − (𝑆 · 𝑇))) = 𝑆)
131130oveq1d 6705 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑇 − (𝑆 · 𝑇))) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = (𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
13286, 78dividd 10837 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 + 𝑇) − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = 1)
133132oveq1d 6705 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) = (1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
134125, 131, 1333eqtr3d 2693 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = (1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
135134oveq1d 6705 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · (1 − 𝑇)) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)))
136117, 123, 1353eqtr3d 2693 . . . 4 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)))
1371, 55, 14sylancr 696 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) ∈ ℝ)
138137recnd 10106 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (1 − 𝑆) ∈ ℂ)
13966, 138, 86, 78div23d 10876 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 · (1 − 𝑆)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · (1 − 𝑆)))
140 subdi 10501 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑇 · (1 − 𝑆)) = ((𝑇 · 1) − (𝑇 · 𝑆)))
14127, 140mp3an2 1452 . . . . . . . 8 ((𝑇 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑇 · (1 − 𝑆)) = ((𝑇 · 1) − (𝑇 · 𝑆)))
14266, 99, 141syl2anc 694 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 · (1 − 𝑆)) = ((𝑇 · 1) − (𝑇 · 𝑆)))
14366mulid1d 10095 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 · 1) = 𝑇)
14466, 99mulcomd 10099 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 · 𝑆) = (𝑆 · 𝑇))
145143, 144oveq12d 6708 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 · 1) − (𝑇 · 𝑆)) = (𝑇 − (𝑆 · 𝑇)))
146142, 145eqtrd 2685 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 · (1 − 𝑆)) = (𝑇 − (𝑆 · 𝑇)))
147146oveq1d 6705 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 · (1 − 𝑆)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
14894recnd 10106 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 − (𝑆 · 𝑇)) ∈ ℂ)
14986, 148, 86, 78divsubdird 10878 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑆 − (𝑆 · 𝑇))) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
150126, 99, 127nnncan2d 10465 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑆 − (𝑆 · 𝑇))) = ((𝑆 + 𝑇) − 𝑆))
15199, 66pncan2d 10432 . . . . . . . . 9 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 + 𝑇) − 𝑆) = 𝑇)
152150, 151eqtrd 2685 . . . . . . . 8 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑆 − (𝑆 · 𝑇))) = 𝑇)
153152oveq1d 6705 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) − (𝑆 − (𝑆 · 𝑇))) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = (𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
154132oveq1d 6705 . . . . . . 7 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((((𝑆 + 𝑇) − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) = (1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
155149, 153, 1543eqtr3d 2693 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = (1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
156155oveq1d 6705 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · (1 − 𝑆)) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆)))
157139, 147, 1563eqtr3d 2693 . . . 4 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆)))
15899, 66mulcomd 10099 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → (𝑆 · 𝑇) = (𝑇 · 𝑆))
159158oveq1d 6705 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · 𝑇) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑇 · 𝑆) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))))
16099, 66, 86, 78div23d 10876 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · 𝑇) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · 𝑇))
161134oveq1d 6705 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · 𝑇) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇))
162160, 161eqtrd 2685 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑆 · 𝑇) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇))
16366, 99, 86, 78div23d 10876 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 · 𝑆) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · 𝑆))
164155oveq1d 6705 . . . . . 6 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) · 𝑆) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))
165163, 164eqtrd 2685 . . . . 5 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((𝑇 · 𝑆) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))
166159, 162, 1653eqtr3d 2693 . . . 4 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))
167 oveq2 6698 . . . . . . . 8 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (1 − 𝑟) = (1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
168167oveq1d 6705 . . . . . . 7 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((1 − 𝑟) · (1 − 𝑇)) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)))
169168eqeq2d 2661 . . . . . 6 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ↔ 𝑝 = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇))))
170 eqeq1 2655 . . . . . 6 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ↔ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − 𝑝) · (1 − 𝑆))))
171167oveq1d 6705 . . . . . . 7 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((1 − 𝑟) · 𝑇) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇))
172171eqeq1d 2653 . . . . . 6 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆) ↔ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − 𝑝) · 𝑆)))
173169, 170, 1723anbi123d 1439 . . . . 5 (𝑟 = ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)) ↔ (𝑝 = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)) ∧ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − 𝑝) · 𝑆))))
174 eqeq1 2655 . . . . . 6 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (𝑝 = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)) ↔ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇))))
175 oveq2 6698 . . . . . . . 8 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (1 − 𝑝) = (1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))))
176175oveq1d 6705 . . . . . . 7 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((1 − 𝑝) · (1 − 𝑆)) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆)))
177176eqeq2d 2661 . . . . . 6 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − 𝑝) · (1 − 𝑆)) ↔ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆))))
178175oveq1d 6705 . . . . . . 7 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((1 − 𝑝) · 𝑆) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))
179178eqeq2d 2661 . . . . . 6 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → (((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − 𝑝) · 𝑆) ↔ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆)))
180174, 177, 1793anbi123d 1439 . . . . 5 (𝑝 = ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) → ((𝑝 = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)) ∧ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − 𝑝) · 𝑆)) ↔ (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)) ∧ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆)) ∧ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))))
181173, 180rspc2ev 3355 . . . 4 ((((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1) ∧ ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) ∈ (0[,]1) ∧ (((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑇)) ∧ ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇))) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · (1 − 𝑆)) ∧ ((1 − ((𝑇 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑇) = ((1 − ((𝑆 − (𝑆 · 𝑇)) / ((𝑆 + 𝑇) − (𝑆 · 𝑇)))) · 𝑆))) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
18293, 114, 136, 157, 166, 181syl113anc 1378 . . 3 ((𝑆 ≠ 0 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
183182ex 449 . 2 (𝑆 ≠ 0 → ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆))))
18453, 183pm2.61ine 2906 1 ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  [,]cicc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-icc 12220
This theorem is referenced by:  axpasch  25866
  Copyright terms: Public domain W3C validator