HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axpjcl Structured version   Visualization version   GIF version

Theorem axpjcl 28147
Description: Closure of a projection in its subspace. If we consider this together with axpjpj 28167 to be axioms, the need for the ax-hcompl 27947 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 28182.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axpjcl ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) ∈ 𝐻)

Proof of Theorem axpjcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 ((proj𝐻)‘𝐴) = ((proj𝐻)‘𝐴)
2 pjeq 28146 . . 3 ((𝐻C𝐴 ∈ ℋ) → (((proj𝐻)‘𝐴) = ((proj𝐻)‘𝐴) ↔ (((proj𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((proj𝐻)‘𝐴) + 𝑥))))
31, 2mpbii 223 . 2 ((𝐻C𝐴 ∈ ℋ) → (((proj𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((proj𝐻)‘𝐴) + 𝑥)))
43simpld 475 1 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2909  cfv 5857  (class class class)co 6615  chil 27664   + cva 27665   C cch 27674  cort 27675  projcpjh 27682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cc 9217  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976  ax-hilex 27744  ax-hfvadd 27745  ax-hvcom 27746  ax-hvass 27747  ax-hv0cl 27748  ax-hvaddid 27749  ax-hfvmul 27750  ax-hvmulid 27751  ax-hvmulass 27752  ax-hvdistr1 27753  ax-hvdistr2 27754  ax-hvmul0 27755  ax-hfi 27824  ax-his1 27827  ax-his2 27828  ax-his3 27829  ax-his4 27830  ax-hcompl 27947
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ico 12139  df-icc 12140  df-fz 12285  df-fl 12549  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-rest 16023  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-top 20639  df-topon 20656  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lm 20973  df-haus 21059  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-cfil 22993  df-cau 22994  df-cmet 22995  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343  df-ims 27344  df-ssp 27465  df-ph 27556  df-cbn 27607  df-hnorm 27713  df-hba 27714  df-hvsub 27716  df-hlim 27717  df-hcau 27718  df-sh 27952  df-ch 27966  df-oc 27997  df-ch0 27998  df-shs 28055  df-pjh 28142
This theorem is referenced by:  pjhcl  28148  pjcli  28164  pjpjhth  28172  pjoccl  28180  pjspansn  28324  pjorthi  28416  pjcompi  28419
  Copyright terms: Public domain W3C validator