MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem3 Structured version   Visualization version   GIF version

Theorem axpowndlem3 10020
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2386. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.)
Assertion
Ref Expression
axpowndlem3 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
Distinct variable group:   𝑦,𝑧

Proof of Theorem axpowndlem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sp 2178 . . 3 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21con3i 157 . 2 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
3 p0ex 5284 . . . . . . . 8 {∅} ∈ V
4 eleq2 2901 . . . . . . . . . 10 (𝑥 = {∅} → (𝑤𝑥𝑤 ∈ {∅}))
54imbi2d 343 . . . . . . . . 9 (𝑥 = {∅} → ((𝑤 = ∅ → 𝑤𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ {∅})))
65albidv 1917 . . . . . . . 8 (𝑥 = {∅} → (∀𝑤(𝑤 = ∅ → 𝑤𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅})))
73, 6spcev 3606 . . . . . . 7 (∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}) → ∃𝑥𝑤(𝑤 = ∅ → 𝑤𝑥))
8 0ex 5210 . . . . . . . . 9 ∅ ∈ V
98snid 4600 . . . . . . . 8 ∅ ∈ {∅}
10 eleq1 2900 . . . . . . . 8 (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅ ∈ {∅}))
119, 10mpbiri 260 . . . . . . 7 (𝑤 = ∅ → 𝑤 ∈ {∅})
127, 11mpg 1794 . . . . . 6 𝑥𝑤(𝑤 = ∅ → 𝑤𝑥)
13 neq0 4308 . . . . . . . . . 10 𝑤 = ∅ ↔ ∃𝑥 𝑥𝑤)
1413con1bii 359 . . . . . . . . 9 (¬ ∃𝑥 𝑥𝑤𝑤 = ∅)
1514imbi1i 352 . . . . . . . 8 ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (𝑤 = ∅ → 𝑤𝑥))
1615albii 1816 . . . . . . 7 (∀𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤𝑥))
1716exbii 1844 . . . . . 6 (∃𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∃𝑥𝑤(𝑤 = ∅ → 𝑤𝑥))
1812, 17mpbir 233 . . . . 5 𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥)
19 nfnae 2452 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
20 nfnae 2452 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
21 nfcvf2 3008 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
22 nfcvd 2978 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑤)
2321, 22nfeld 2989 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥𝑤)
2419, 23nfexd 2344 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥 𝑥𝑤)
2524nfnd 1854 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 ¬ ∃𝑥 𝑥𝑤)
2622, 21nfeld 2989 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤𝑥)
2725, 26nfimd 1891 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(¬ ∃𝑥 𝑥𝑤𝑤𝑥))
28 nfeqf2 2391 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 = 𝑦)
2919, 28nfan1 2196 . . . . . . . . . . 11 𝑥(¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦)
30 elequ2 2125 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
3130adantl 484 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (𝑥𝑤𝑥𝑦))
3229, 31exbid 2221 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (∃𝑥 𝑥𝑤 ↔ ∃𝑥 𝑥𝑦))
3332notbid 320 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (¬ ∃𝑥 𝑥𝑤 ↔ ¬ ∃𝑥 𝑥𝑦))
34 elequ1 2117 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
3534adantl 484 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (𝑤𝑥𝑦𝑥))
3633, 35imbi12d 347 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
3736ex 415 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (¬ ∃𝑥 𝑥𝑦𝑦𝑥))))
3820, 27, 37cbvald 2424 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∀𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
3919, 38exbid 2221 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
4018, 39mpbii 235 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥))
41 nfae 2451 . . . . 5 𝑥𝑥 𝑥 = 𝑧
42 nfae 2451 . . . . . 6 𝑦𝑥 𝑥 = 𝑧
43 axc11r 2382 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → (∀𝑧 ¬ 𝑥𝑦 → ∀𝑥 ¬ 𝑥𝑦))
44 alnex 1778 . . . . . . . . . 10 (∀𝑧 ¬ 𝑥𝑦 ↔ ¬ ∃𝑧 𝑥𝑦)
45 alnex 1778 . . . . . . . . . 10 (∀𝑥 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥 𝑥𝑦)
4643, 44, 453imtr3g 297 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 → (¬ ∃𝑧 𝑥𝑦 → ¬ ∃𝑥 𝑥𝑦))
47 nd3 10010 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑥𝑧)
4847pm2.21d 121 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑥𝑧 → ¬ ∃𝑥 𝑥𝑦))
4946, 48jad 189 . . . . . . . 8 (∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → ¬ ∃𝑥 𝑥𝑦))
5049spsd 2182 . . . . . . 7 (∀𝑥 𝑥 = 𝑧 → (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → ¬ ∃𝑥 𝑥𝑦))
5150imim1d 82 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ((¬ ∃𝑥 𝑥𝑦𝑦𝑥) → (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5242, 51alimd 2208 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥) → ∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5341, 52eximd 2212 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥) → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5440, 53syl5com 31 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
55 axpowndlem2 10019 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5654, 55pm2.61d 181 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
572, 56syl 17 1 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  c0 4290  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-13 2386  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-reg 9055
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-pw 4540  df-sn 4567  df-pr 4569
This theorem is referenced by:  axpowndlem4  10021
  Copyright terms: Public domain W3C validator