MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-ltadd Structured version   Visualization version   GIF version

Theorem axpre-ltadd 10591
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 10716. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 10615. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axpre-ltadd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10555 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10555 . . 3 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 10555 . . 3 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5071 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
5 oveq2 7166 . . . . 5 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐴))
65breq1d 5078 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
74, 6bibi12d 348 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩))))
8 breq2 5072 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 oveq2 7166 . . . . 5 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = (⟨𝑧, 0R⟩ + 𝐵))
109breq2d 5080 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)))
118, 10bibi12d 348 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)) ↔ (𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵))))
12 oveq1 7165 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐴) = (𝐶 + 𝐴))
13 oveq1 7165 . . . . 5 (⟨𝑧, 0R⟩ = 𝐶 → (⟨𝑧, 0R⟩ + 𝐵) = (𝐶 + 𝐵))
1412, 13breq12d 5081 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → ((⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
1514bibi2d 345 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵 ↔ (⟨𝑧, 0R⟩ + 𝐴) < (⟨𝑧, 0R⟩ + 𝐵)) ↔ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))))
16 ltasr 10524 . . . . . . 7 (𝑧R → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
1716adantr 483 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (𝑥 <R 𝑦 ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
18 ltresr 10564 . . . . . . 7 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
1918a1i 11 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦))
20 addresr 10562 . . . . . . . . 9 ((𝑧R𝑥R) → (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) = ⟨(𝑧 +R 𝑥), 0R⟩)
21 addresr 10562 . . . . . . . . 9 ((𝑧R𝑦R) → (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑧 +R 𝑦), 0R⟩)
2220, 21breqan12d 5084 . . . . . . . 8 (((𝑧R𝑥R) ∧ (𝑧R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
2322anandis 676 . . . . . . 7 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ ⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩))
24 ltresr 10564 . . . . . . 7 (⟨(𝑧 +R 𝑥), 0R⟩ < ⟨(𝑧 +R 𝑦), 0R⟩ ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦))
2523, 24syl6bb 289 . . . . . 6 ((𝑧R ∧ (𝑥R𝑦R)) → ((⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩) ↔ (𝑧 +R 𝑥) <R (𝑧 +R 𝑦)))
2617, 19, 253bitr4d 313 . . . . 5 ((𝑧R ∧ (𝑥R𝑦R)) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
2726ancoms 461 . . . 4 (((𝑥R𝑦R) ∧ 𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
28273impa 1106 . . 3 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ (⟨𝑧, 0R⟩ + ⟨𝑥, 0R⟩) < (⟨𝑧, 0R⟩ + ⟨𝑦, 0R⟩)))
291, 2, 3, 7, 11, 15, 283gencl 3538 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
3029biimpd 231 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cop 4575   class class class wbr 5068  (class class class)co 7158  Rcnr 10289  0Rc0r 10290   +R cplr 10293   <R cltr 10295  cr 10538   + caddc 10542   < cltrr 10543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-ni 10296  df-pli 10297  df-mi 10298  df-lti 10299  df-plpq 10332  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-plq 10338  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-1p 10406  df-plp 10407  df-ltp 10409  df-enr 10479  df-nr 10480  df-plr 10481  df-ltr 10483  df-0r 10484  df-c 10545  df-r 10549  df-add 10550  df-lt 10552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator