MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 9934
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 10057. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 9958. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 9897 . . . . . . 7 (𝑥 ∈ ℝ ↔ ((1st𝑥) ∈ R𝑥 = ⟨(1st𝑥), 0R⟩))
21simplbi 476 . . . . . 6 (𝑥 ∈ ℝ → (1st𝑥) ∈ R)
32adantl 482 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (1st𝑥) ∈ R)
4 fo1st 7133 . . . . . . . . . . . 12 1st :V–onto→V
5 fof 6072 . . . . . . . . . . . 12 (1st :V–onto→V → 1st :V⟶V)
6 ffn 6002 . . . . . . . . . . . 12 (1st :V⟶V → 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 3604 . . . . . . . . . . 11 𝐴 ⊆ V
9 fvelimab 6210 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤))
107, 8, 9mp2an 707 . . . . . . . . . 10 (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤)
11 r19.29 3065 . . . . . . . . . . . 12 ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → ∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤))
12 ssel2 3578 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 ltresr2 9906 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ (1st𝑦) <R (1st𝑥)))
14 breq1 4616 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑦) = 𝑤 → ((1st𝑦) <R (1st𝑥) ↔ 𝑤 <R (1st𝑥)))
1513, 14sylan9bb 735 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1615biimpd 219 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1716exp31 629 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1918imp4b 612 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (((1st𝑦) = 𝑤𝑦 < 𝑥) → 𝑤 <R (1st𝑥)))
2019ancomsd 470 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2120an32s 845 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2221rexlimdva 3024 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2423expd 452 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (∃𝑦𝐴 (1st𝑦) = 𝑤𝑤 <R (1st𝑥))))
2510, 24syl7bi 245 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥))))
2625impr 648 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2726adantlr 750 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2827ralrimiv 2959 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥))
2928expr 642 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
30 breq2 4617 . . . . . . 7 (𝑣 = (1st𝑥) → (𝑤 <R 𝑣𝑤 <R (1st𝑥)))
3130ralbidv 2980 . . . . . 6 (𝑣 = (1st𝑥) → (∀𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 ↔ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
3231rspcev 3295 . . . . 5 (((1st𝑥) ∈ R ∧ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)) → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣)
333, 29, 32syl6an 567 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
3433rexlimdva 3024 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
35 n0 3907 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
36 fnfvima 6450 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 ⊆ V ∧ 𝑦𝐴) → (1st𝑦) ∈ (1st𝐴))
377, 8, 36mp3an12 1411 . . . . . . . 8 (𝑦𝐴 → (1st𝑦) ∈ (1st𝐴))
38 ne0i 3897 . . . . . . . 8 ((1st𝑦) ∈ (1st𝐴) → (1st𝐴) ≠ ∅)
3937, 38syl 17 . . . . . . 7 (𝑦𝐴 → (1st𝐴) ≠ ∅)
4039exlimiv 1855 . . . . . 6 (∃𝑦 𝑦𝐴 → (1st𝐴) ≠ ∅)
4135, 40sylbi 207 . . . . 5 (𝐴 ≠ ∅ → (1st𝐴) ≠ ∅)
42 supsr 9877 . . . . . 6 (((1st𝐴) ≠ ∅ ∧ ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣) → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)))
4342ex 450 . . . . 5 ((1st𝐴) ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4441, 43syl 17 . . . 4 (𝐴 ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4544adantl 482 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
46 breq2 4617 . . . . . . . . . . . 12 (𝑤 = (1st𝑦) → (𝑣 <R 𝑤𝑣 <R (1st𝑦)))
4746notbid 308 . . . . . . . . . . 11 (𝑤 = (1st𝑦) → (¬ 𝑣 <R 𝑤 ↔ ¬ 𝑣 <R (1st𝑦)))
4847rspccv 3292 . . . . . . . . . 10 (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ((1st𝑦) ∈ (1st𝐴) → ¬ 𝑣 <R (1st𝑦)))
4937, 48syl5com 31 . . . . . . . . 9 (𝑦𝐴 → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
5049adantl 482 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
51 elreal2 9897 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st𝑦) ∈ R𝑦 = ⟨(1st𝑦), 0R⟩))
5251simprbi 480 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 = ⟨(1st𝑦), 0R⟩)
5352breq2d 4625 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦 ↔ ⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩))
54 ltresr 9905 . . . . . . . . . . 11 (⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩ ↔ 𝑣 <R (1st𝑦))
5553, 54syl6bb 276 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5612, 55syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5756notbid 308 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (¬ ⟨𝑣, 0R⟩ < 𝑦 ↔ ¬ 𝑣 <R (1st𝑦)))
5850, 57sylibrd 249 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ ⟨𝑣, 0R⟩ < 𝑦))
5958ralrimdva 2963 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
6059ad2antrr 761 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
6152breq1d 4623 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ ⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩))
62 ltresr 9905 . . . . . . . . . . . . . 14 (⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣)
6361, 62syl6bb 276 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣))
6451simplbi 476 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (1st𝑦) ∈ R)
65 breq1 4616 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (𝑤 <R 𝑣 ↔ (1st𝑦) <R 𝑣))
66 breq1 4616 . . . . . . . . . . . . . . . . . 18 (𝑤 = (1st𝑦) → (𝑤 <R 𝑢 ↔ (1st𝑦) <R 𝑢))
6766rexbidv 3045 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢 ↔ ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢))
6865, 67imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑤 = (1st𝑦) → ((𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) ↔ ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6968rspccv 3292 . . . . . . . . . . . . . . 15 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ((1st𝑦) ∈ R → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7064, 69syl5 34 . . . . . . . . . . . . . 14 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7170com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7263, 71sylbid 230 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7372adantr 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
74 fvelimab 6210 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢))
757, 8, 74mp2an 707 . . . . . . . . . . . . . . 15 (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢)
76 ssel2 3578 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
77 ltresr2 9906 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
7876, 77sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
79 breq2 4617 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) = 𝑢 → ((1st𝑦) <R (1st𝑧) ↔ (1st𝑦) <R 𝑢))
8078, 79sylan9bb 735 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) ∧ (1st𝑧) = 𝑢) → (𝑦 < 𝑧 ↔ (1st𝑦) <R 𝑢))
8180exbiri 651 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧)))
8281expr 642 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧))))
8382com4r 94 . . . . . . . . . . . . . . . . 17 ((1st𝑦) <R 𝑢 → ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧))))
8483imp 445 . . . . . . . . . . . . . . . 16 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧)))
8584reximdvai 3009 . . . . . . . . . . . . . . 15 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (∃𝑧𝐴 (1st𝑧) = 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8675, 85syl5bi 232 . . . . . . . . . . . . . 14 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧))
8786expcom 451 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((1st𝑦) <R 𝑢 → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧)))
8887com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑢 ∈ (1st𝐴) → ((1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧)))
8988rexlimdv 3023 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
9073, 89syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑧𝐴 𝑦 < 𝑧)))
9190com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
9291ex 450 . . . . . . . 8 (𝑦 ∈ ℝ → (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9392com3l 89 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9493ad2antrr 761 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9594ralrimdv 2962 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
96 opelreal 9895 . . . . . . . 8 (⟨𝑣, 0R⟩ ∈ ℝ ↔ 𝑣R)
9796biimpri 218 . . . . . . 7 (𝑣R → ⟨𝑣, 0R⟩ ∈ ℝ)
9897adantl 482 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ⟨𝑣, 0R⟩ ∈ ℝ)
99 breq1 4616 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑥 < 𝑦 ↔ ⟨𝑣, 0R⟩ < 𝑦))
10099notbid 308 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → (¬ 𝑥 < 𝑦 ↔ ¬ ⟨𝑣, 0R⟩ < 𝑦))
101100ralbidv 2980 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
102 breq2 4617 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑦 < 𝑥𝑦 <𝑣, 0R⟩))
103102imbi1d 331 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
104103ralbidv 2980 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
105101, 104anbi12d 746 . . . . . . . 8 (𝑥 = ⟨𝑣, 0R⟩ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
106105rspcev 3295 . . . . . . 7 ((⟨𝑣, 0R⟩ ∈ ℝ ∧ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
107106ex 450 . . . . . 6 (⟨𝑣, 0R⟩ ∈ ℝ → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10898, 107syl 17 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10960, 95, 108syl2and 500 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
110109rexlimdva 3024 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
11134, 45, 1103syld 60 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
1121113impia 1258 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891  cop 4154   class class class wbr 4613  cima 5077   Fn wfn 5842  wf 5843  ontowfo 5845  cfv 5847  1st c1st 7111  Rcnr 9631  0Rc0r 9632   <R cltr 9637  cr 9879   < cltrr 9884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747  df-1p 9748  df-plp 9749  df-mp 9750  df-ltp 9751  df-enr 9821  df-nr 9822  df-plr 9823  df-mr 9824  df-ltr 9825  df-0r 9826  df-1r 9827  df-m1r 9828  df-r 9890  df-lt 9893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator