MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Structured version   Visualization version   GIF version

Theorem axrrecex 10573
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 10597. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrrecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10541 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 3141 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 276 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 neeq1 3075 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝐴 ≠ 0))
5 oveq1 7152 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2820 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76rexbidv 3294 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
84, 7imbi12d 346 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)))
9 df-0 10532 . . . . . . 7 0 = ⟨0R, 0R
109eqeq2i 2831 . . . . . 6 (⟨𝑦, 0R⟩ = 0 ↔ ⟨𝑦, 0R⟩ = ⟨0R, 0R⟩)
11 vex 3495 . . . . . . 7 𝑦 ∈ V
1211eqresr 10547 . . . . . 6 (⟨𝑦, 0R⟩ = ⟨0R, 0R⟩ ↔ 𝑦 = 0R)
1310, 12bitri 276 . . . . 5 (⟨𝑦, 0R⟩ = 0 ↔ 𝑦 = 0R)
1413necon3bii 3065 . . . 4 (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝑦 ≠ 0R)
15 recexsr 10517 . . . . . 6 ((𝑦R𝑦 ≠ 0R) → ∃𝑧R (𝑦 ·R 𝑧) = 1R)
1615ex 413 . . . . 5 (𝑦R → (𝑦 ≠ 0R → ∃𝑧R (𝑦 ·R 𝑧) = 1R))
17 opelreal 10540 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1817anbi1i 623 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
19 mulresr 10549 . . . . . . . . . . . 12 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2019eqeq1d 2820 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
21 df-1 10533 . . . . . . . . . . . . 13 1 = ⟨1R, 0R
2221eqeq2i 2831 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
23 ovex 7178 . . . . . . . . . . . . 13 (𝑦 ·R 𝑧) ∈ V
2423eqresr 10547 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
2522, 24bitri 276 . . . . . . . . . . 11 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
2620, 25syl6bb 288 . . . . . . . . . 10 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
2726pm5.32da 579 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
2818, 27syl5bb 284 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
29 oveq2 7153 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3029eqeq1d 2820 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3130rspcev 3620 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)
3228, 31syl6bir 255 . . . . . . 7 (𝑦R → ((𝑧R ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3332expd 416 . . . . . 6 (𝑦R → (𝑧R → ((𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
3433rexlimdv 3280 . . . . 5 (𝑦R → (∃𝑧R (𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3516, 34syld 47 . . . 4 (𝑦R → (𝑦 ≠ 0R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3614, 35syl5bi 243 . . 3 (𝑦R → (⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
373, 8, 36gencl 3532 . 2 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3837imp 407 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  cop 4563  (class class class)co 7145  Rcnr 10275  0Rc0r 10276  1Rc1r 10277   ·R cmr 10280  cr 10524  0cc0 10525  1c1 10526   · cmul 10530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-ec 8280  df-qs 8284  df-ni 10282  df-pli 10283  df-mi 10284  df-lti 10285  df-plpq 10318  df-mpq 10319  df-ltpq 10320  df-enq 10321  df-nq 10322  df-erq 10323  df-plq 10324  df-mq 10325  df-1nq 10326  df-rq 10327  df-ltnq 10328  df-np 10391  df-1p 10392  df-plp 10393  df-mp 10394  df-ltp 10395  df-enr 10465  df-nr 10466  df-plr 10467  df-mr 10468  df-ltr 10469  df-0r 10470  df-1r 10471  df-m1r 10472  df-c 10531  df-0 10532  df-1 10533  df-r 10535  df-mul 10537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator