Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axtglowdim2OLD Structured version   Visualization version   GIF version

Theorem axtglowdim2OLD 30873
Description: Lower dimension axiom for dimension 2, Axiom A8 of [Schwabhauser] p. 13. There exist 3 non-colinear points. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Base‘𝐺)
istrkg2d.d = (dist‘𝐺)
istrkg2d.i 𝐼 = (Itv‘𝐺)
axtglowdim2OLD.g (𝜑𝐺 ∈ TarskiG2D)
Assertion
Ref Expression
axtglowdim2OLD (𝜑 → ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
Distinct variable groups:   𝑥, ,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem axtglowdim2OLD
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtglowdim2OLD.g . . . 4 (𝜑𝐺 ∈ TarskiG2D)
2 istrkg2d.p . . . . 5 𝑃 = (Base‘𝐺)
3 istrkg2d.d . . . . 5 = (dist‘𝐺)
4 istrkg2d.i . . . . 5 𝐼 = (Itv‘𝐺)
52, 3, 4istrkg2d 30872 . . . 4 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
61, 5sylib 208 . . 3 (𝜑 → (𝐺 ∈ V ∧ (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
76simprd 478 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((((𝑥 𝑢) = (𝑥 𝑣) ∧ (𝑦 𝑢) = (𝑦 𝑣) ∧ (𝑧 𝑢) = (𝑧 𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
87simpld 474 1 (𝜑 → ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  Itvcitv 25380  TarskiG2Dcstrkg2d 30870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-ov 6693  df-trkg2d 30871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator