MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   GIF version

Theorem axtgsegcon 25583
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgsegcon.1 (𝜑𝑋𝑃)
axtgsegcon.2 (𝜑𝑌𝑃)
axtgsegcon.3 (𝜑𝐴𝑃)
axtgsegcon.4 (𝜑𝐵𝑃)
Assertion
Ref Expression
axtgsegcon (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝑧,
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)

Proof of Theorem axtgsegcon
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25572 . . . . . 6 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss2 3977 . . . . . . 7 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
3 inss1 3976 . . . . . . 7 (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}) ⊆ TarskiGCB
42, 3sstri 3753 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGCB
51, 4eqsstri 3776 . . . . 5 TarskiG ⊆ TarskiGCB
6 axtrkg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3742 . . . 4 (𝜑𝐺 ∈ TarskiGCB)
8 axtrkg.p . . . . . . 7 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . . 7 = (dist‘𝐺)
10 axtrkg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgcb 25575 . . . . . 6 (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
1211simprbi 483 . . . . 5 (𝐺 ∈ TarskiGCB → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
1312simprd 482 . . . 4 (𝐺 ∈ TarskiGCB → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
147, 13syl 17 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))
15 axtgsegcon.1 . . . 4 (𝜑𝑋𝑃)
16 axtgsegcon.2 . . . 4 (𝜑𝑌𝑃)
17 oveq1 6821 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
1817eleq2d 2825 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
1918anbi1d 743 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
2019rexbidv 3190 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
21202ralbidv 3127 . . . . 5 (𝑥 = 𝑋 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏))))
22 eleq1 2827 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
23 oveq1 6821 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
2423eqeq1d 2762 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑦 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝑎 𝑏)))
2522, 24anbi12d 749 . . . . . . 7 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2625rexbidv 3190 . . . . . 6 (𝑦 = 𝑌 → (∃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
27262ralbidv 3127 . . . . 5 (𝑦 = 𝑌 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑋𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) ↔ ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2821, 27rspc2v 3461 . . . 4 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
2915, 16, 28syl2anc 696 . . 3 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏))))
3014, 29mpd 15 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)))
31 axtgsegcon.3 . . 3 (𝜑𝐴𝑃)
32 axtgsegcon.4 . . 3 (𝜑𝐵𝑃)
33 oveq1 6821 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
3433eqeq2d 2770 . . . . . 6 (𝑎 = 𝐴 → ((𝑌 𝑧) = (𝑎 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝑏)))
3534anbi2d 742 . . . . 5 (𝑎 = 𝐴 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
3635rexbidv 3190 . . . 4 (𝑎 = 𝐴 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏))))
37 oveq2 6822 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
3837eqeq2d 2770 . . . . . 6 (𝑏 = 𝐵 → ((𝑌 𝑧) = (𝐴 𝑏) ↔ (𝑌 𝑧) = (𝐴 𝐵)))
3938anbi2d 742 . . . . 5 (𝑏 = 𝐵 → ((𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4039rexbidv 3190 . . . 4 (𝑏 = 𝐵 → (∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝑏)) ↔ ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4136, 40rspc2v 3461 . . 3 ((𝐴𝑃𝐵𝑃) → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4231, 32, 41syl2anc 696 . 2 (𝜑 → (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝑎 𝑏)) → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵))))
4330, 42mpd 15 1 (𝜑 → ∃𝑧𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 𝑧) = (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1071  w3a 1072   = wceq 1632  wcel 2139  {cab 2746  wne 2932  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  [wsbc 3576  cdif 3712  cin 3714  {csn 4321  cfv 6049  (class class class)co 6814  cmpt2 6816  Basecbs 16079  distcds 16172  TarskiGcstrkg 25549  TarskiGCcstrkgc 25550  TarskiGBcstrkgb 25551  TarskiGCBcstrkgcb 25552  Itvcitv 25555  LineGclng 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-nul 4941
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817  df-trkgcb 25569  df-trkg 25572
This theorem is referenced by:  tgcgrtriv  25599  tgbtwntriv2  25602  tgbtwnouttr2  25610  tgbtwndiff  25621  tgifscgr  25623  tgcgrxfr  25633  lnext  25682  tgbtwnconn1lem3  25689  tgbtwnconn1  25690  legtrid  25706  hlcgrex  25731  mirreu3  25769  miriso  25785  midexlem  25807  footex  25833  opphllem  25847  dfcgra2  25941  f1otrg  25971
  Copyright terms: Public domain W3C validator