MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgupdim2 Structured version   Visualization version   GIF version

Theorem axtgupdim2 26184
Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgupdim2.x (𝜑𝑋𝑃)
axtgupdim2.y (𝜑𝑌𝑃)
axtgupdim2.z (𝜑𝑍𝑃)
axtgupdim2.u (𝜑𝑈𝑃)
axtgupdim2.v (𝜑𝑉𝑃)
axtgupdim2.0 (𝜑𝑈𝑉)
axtgupdim2.1 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
axtgupdim2.2 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
axtgupdim2.3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
axtgupdim2.w (𝜑𝐺𝑉)
axtgupdim2.g (𝜑 → ¬ 𝐺DimTarskiG≥3)
Assertion
Ref Expression
axtgupdim2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2.1 . . 3 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
2 axtgupdim2.2 . . 3 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
3 axtgupdim2.3 . . 3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
4 axtgupdim2.0 . . . . . . 7 (𝜑𝑈𝑉)
5 axtgupdim2.g . . . . . . . . . . 11 (𝜑 → ¬ 𝐺DimTarskiG≥3)
6 axtgupdim2.w . . . . . . . . . . . 12 (𝜑𝐺𝑉)
7 axtrkge.p . . . . . . . . . . . . 13 𝑃 = (Base‘𝐺)
8 axtrkge.d . . . . . . . . . . . . 13 = (dist‘𝐺)
9 axtrkge.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg3ld 26174 . . . . . . . . . . . 12 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
125, 11mtbid 325 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
13 ralnex2 3257 . . . . . . . . . 10 (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1412, 13sylibr 235 . . . . . . . . 9 (𝜑 → ∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 axtgupdim2.u . . . . . . . . . 10 (𝜑𝑈𝑃)
16 axtgupdim2.v . . . . . . . . . 10 (𝜑𝑉𝑃)
17 neeq1 3075 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
18 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑥) = (𝑈 𝑥))
1918eqeq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑣 𝑥)))
20 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑦) = (𝑈 𝑦))
2120eqeq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑣 𝑦)))
22 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑧) = (𝑈 𝑧))
2322eqeq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑣 𝑧)))
2419, 21, 233anbi123d 1427 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑈 → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧))))
2524anbi1d 629 . . . . . . . . . . . . . . 15 (𝑢 = 𝑈 → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2625rexbidv 3294 . . . . . . . . . . . . . 14 (𝑢 = 𝑈 → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
27262rexbidv 3297 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2817, 27anbi12d 630 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ((𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
2928notbid 319 . . . . . . . . . . 11 (𝑢 = 𝑈 → (¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
30 neeq2 3076 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
31 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑥) = (𝑉 𝑥))
3231eqeq2d 2829 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑉 𝑥)))
33 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑦) = (𝑉 𝑦))
3433eqeq2d 2829 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑉 𝑦)))
35 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑧) = (𝑉 𝑧))
3635eqeq2d 2829 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑉 𝑧)))
3732, 34, 363anbi123d 1427 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑉 → (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
3837anbi1d 629 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3938rexbidv 3294 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
40392rexbidv 3297 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4130, 40anbi12d 630 . . . . . . . . . . . 12 (𝑣 = 𝑉 → ((𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4241notbid 319 . . . . . . . . . . 11 (𝑣 = 𝑉 → (¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4329, 42rspc2v 3630 . . . . . . . . . 10 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4415, 16, 43syl2anc 584 . . . . . . . . 9 (𝜑 → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4514, 44mpd 15 . . . . . . . 8 (𝜑 → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
46 imnan 400 . . . . . . . 8 ((𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4745, 46sylibr 235 . . . . . . 7 (𝜑 → (𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
484, 47mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
49 ralnex3 3259 . . . . . 6 (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
5048, 49sylibr 235 . . . . 5 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
51 axtgupdim2.x . . . . . 6 (𝜑𝑋𝑃)
52 axtgupdim2.y . . . . . 6 (𝜑𝑌𝑃)
53 axtgupdim2.z . . . . . 6 (𝜑𝑍𝑃)
54 oveq2 7153 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑈 𝑥) = (𝑈 𝑋))
55 oveq2 7153 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑉 𝑥) = (𝑉 𝑋))
5654, 55eqeq12d 2834 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑈 𝑥) = (𝑉 𝑥) ↔ (𝑈 𝑋) = (𝑉 𝑋)))
57563anbi1d 1431 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
58 oveq1 7152 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
5958eleq2d 2895 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
60 eleq1 2897 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
61 oveq1 7152 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
6261eleq2d 2895 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
6359, 60, 623orbi123d 1426 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6463notbid 319 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6557, 64anbi12d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
6665notbid 319 . . . . . . 7 (𝑥 = 𝑋 → (¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
67 oveq2 7153 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑈 𝑦) = (𝑈 𝑌))
68 oveq2 7153 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑉 𝑦) = (𝑉 𝑌))
6967, 68eqeq12d 2834 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑈 𝑦) = (𝑉 𝑦) ↔ (𝑈 𝑌) = (𝑉 𝑌)))
70693anbi2d 1432 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
71 oveq2 7153 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
7271eleq2d 2895 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
73 oveq2 7153 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
7473eleq2d 2895 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
75 eleq1 2897 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
7672, 74, 753orbi123d 1426 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7776notbid 319 . . . . . . . . 9 (𝑦 = 𝑌 → (¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7870, 77anbi12d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
7978notbid 319 . . . . . . 7 (𝑦 = 𝑌 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
80 oveq2 7153 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑈 𝑧) = (𝑈 𝑍))
81 oveq2 7153 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑉 𝑧) = (𝑉 𝑍))
8280, 81eqeq12d 2834 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑈 𝑧) = (𝑉 𝑧) ↔ (𝑈 𝑍) = (𝑉 𝑍)))
83823anbi3d 1433 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍))))
84 eleq1 2897 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
85 oveq1 7152 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
8685eleq2d 2895 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
87 oveq2 7153 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
8887eleq2d 2895 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
8984, 86, 883orbi123d 1426 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9089notbid 319 . . . . . . . . 9 (𝑧 = 𝑍 → (¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9183, 90anbi12d 630 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9291notbid 319 . . . . . . 7 (𝑧 = 𝑍 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9366, 79, 92rspc3v 3633 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9451, 52, 53, 93syl3anc 1363 . . . . 5 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9550, 94mpd 15 . . . 4 (𝜑 → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
96 imnan 400 . . . 4 ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9795, 96sylibr 235 . . 3 (𝜑 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
981, 2, 3, 97mp3and 1455 . 2 (𝜑 → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
9998notnotrd 135 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3o 1078  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  3c3 11681  Basecbs 16471  distcds 16562  DimTarskiGcstrkgld 26147  Itvcitv 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-trkgld 26165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator