Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axunprim Structured version   Visualization version   GIF version

Theorem axunprim 31323
Description: ax-un 6909 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axunprim ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)

Proof of Theorem axunprim
StepHypRef Expression
1 axunnd 9370 . 2 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
2 df-an 386 . . . . . . . 8 ((𝑦𝑥𝑥𝑧) ↔ ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
32exbii 1771 . . . . . . 7 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
4 exnal 1751 . . . . . . 7 (∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
53, 4bitri 264 . . . . . 6 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
65imbi1i 339 . . . . 5 ((∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ (¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
76albii 1744 . . . 4 (∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
87exbii 1771 . . 3 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
9 df-ex 1702 . . 3 (∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
108, 9bitri 264 . 2 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
111, 10mpbi 220 1 ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6909  ax-reg 8449
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-eprel 4990  df-fr 5038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator