Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem3lem2 Structured version   Visualization version   GIF version

Theorem baerlem3lem2 36518
Description: Lemma for baerlem3 36521. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem3lem2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))

Proof of Theorem baerlem3lem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19046 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3572 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3572 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.m . . . . 5 = (-g𝑊)
10 baerlem3.s . . . . 5 = (LSSum‘𝑊)
11 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
128, 9, 10, 11lspsntrim 19038 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1323 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
148, 9, 11, 3, 5, 7lspsnsub 18947 . . . . 5 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑍 𝑌)}))
15 lmodabl 18850 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
163, 15syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
17 baerlem3.x . . . . . . . 8 (𝜑𝑋𝑉)
188, 9, 16, 17, 5, 7ablnnncan1 18169 . . . . . . 7 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
1918sneqd 4167 . . . . . 6 (𝜑 → {((𝑋 𝑌) (𝑋 𝑍))} = {(𝑍 𝑌)})
2019fveq2d 6162 . . . . 5 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) = (𝑁‘{(𝑍 𝑌)}))
2114, 20eqtr4d 2658 . . . 4 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}))
228, 9lmodvsubcl 18848 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
233, 17, 5, 22syl3anc 1323 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
248, 9lmodvsubcl 18848 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
253, 17, 7, 24syl3anc 1323 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
268, 9, 10, 11lspsntrim 19038 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉 ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
273, 23, 25, 26syl3anc 1323 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2821, 27eqsstrd 3624 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2913, 28ssind 3821 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
30 elin 3780 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
31 baerlem3.p . . . . . . 7 + = (+g𝑊)
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 31, 32, 33, 34, 10, 11, 3, 5, 7lsmspsn 19024 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 31, 32, 33, 34, 10, 11, 3, 23, 25lsmspsn 19024 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))))
3735, 36anbi12d 746 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
3830, 37syl5bb 272 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LVec)
4240, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1172 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑎𝐵)
54 simp12r 1173 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑏𝐵)
55 simp2l 1085 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑑𝐵)
56 simp2r 1086 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑒𝐵)
57 simp13 1091 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1061 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))
598, 9, 39, 10, 11, 41, 42, 44, 46, 47, 48, 31, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem3lem1 36515 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = (𝑎 · (𝑌 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LMod)
618, 9lmodvsubcl 18848 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 𝑍) ∈ 𝑉)
623, 5, 7, 61syl3anc 1323 . . . . . . . . . . . 12 (𝜑 → (𝑌 𝑍) ∈ 𝑉)
6340, 62syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑌 𝑍) ∈ 𝑉)
648, 34, 32, 33, 11, 60, 53, 63lspsneli 18941 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑎 · (𝑌 𝑍)) ∈ (𝑁‘{(𝑌 𝑍)}))
6559, 64eqeltrd 2698 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))
66653exp 1261 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
6766rexlimdvv 3032 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
68673exp 1261 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))))
6968rexlimdvv 3032 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
7069impd 447 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7138, 70sylbid 230 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7271ssrdv 3594 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ⊆ (𝑁‘{(𝑌 𝑍)}))
7329, 72eqssd 3605 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2909  cdif 3557  cin 3559  wss 3560  {csn 4155  {cpr 4157  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040  invgcminusg 17363  -gcsg 17364  LSSumclsm 17989  Abelcabl 18134  LModclmod 18803  LSpanclspn 18911  LVecclvec 19042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043
This theorem is referenced by:  baerlem3  36521
  Copyright terms: Public domain W3C validator