Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem1 Structured version   Visualization version   GIF version

Theorem baerlem5alem1 36516
Description: Lemma for baerlem5a 36522. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5a.a1 (𝜑𝑎𝐵)
baerlem5a.b1 (𝜑𝑏𝐵)
baerlem5a.d1 (𝜑𝑑𝐵)
baerlem5a.e1 (𝜑𝑒𝐵)
baerlem5a.j1 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
baerlem5a.j2 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
Assertion
Ref Expression
baerlem5alem1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))

Proof of Theorem baerlem5alem1
StepHypRef Expression
1 baerlem5a.j1 . . 3 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
2 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
3 baerlem3.t . . . . . 6 · = ( ·𝑠𝑊)
4 baerlem3.r . . . . . 6 𝑅 = (Scalar‘𝑊)
5 baerlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
6 baerlem3.m . . . . . 6 = (-g𝑊)
7 baerlem3.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lveclmod 19046 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
10 baerlem5a.a1 . . . . . 6 (𝜑𝑎𝐵)
11 baerlem3.x . . . . . 6 (𝜑𝑋𝑉)
12 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3572 . . . . . 6 (𝜑𝑌𝑉)
142, 3, 4, 5, 6, 9, 10, 11, 13lmodsubdi 18860 . . . . 5 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) (𝑎 · 𝑌)))
15 baerlem3.p . . . . . 6 + = (+g𝑊)
16 baerlem3.i . . . . . 6 𝐼 = (invg𝑅)
172, 4, 3, 5lmodvscl 18820 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑋𝑉) → (𝑎 · 𝑋) ∈ 𝑉)
189, 10, 11, 17syl3anc 1323 . . . . . 6 (𝜑 → (𝑎 · 𝑋) ∈ 𝑉)
192, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13lmodsubvs 18859 . . . . 5 (𝜑 → ((𝑎 · 𝑋) (𝑎 · 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2014, 19eqtrd 2655 . . . 4 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2120oveq1d 6630 . . 3 (𝜑 → ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) = (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)))
224lmodring 18811 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
23 ringgrp 18492 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
249, 22, 233syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
255, 16grpinvcl 17407 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵) → (𝐼𝑎) ∈ 𝐵)
2624, 10, 25syl2anc 692 . . . . 5 (𝜑 → (𝐼𝑎) ∈ 𝐵)
272, 4, 3, 5lmodvscl 18820 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐼𝑎) ∈ 𝐵𝑌𝑉) → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
289, 26, 13, 27syl3anc 1323 . . . 4 (𝜑 → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
29 baerlem5a.b1 . . . . 5 (𝜑𝑏𝐵)
30 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3130eldifad 3572 . . . . 5 (𝜑𝑍𝑉)
322, 4, 3, 5lmodvscl 18820 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
339, 29, 31, 32syl3anc 1323 . . . 4 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
342, 15lmodass 18818 . . . 4 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑋) ∈ 𝑉 ∧ ((𝐼𝑎) · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉)) → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
359, 18, 28, 33, 34syl13anc 1325 . . 3 (𝜑 → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
361, 21, 353eqtrd 2659 . 2 (𝜑𝑗 = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
372, 15lmodvacl 18817 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
389, 13, 31, 37syl3anc 1323 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
392, 4, 3, 5lmodvscl 18820 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
409, 10, 38, 39syl3anc 1323 . . . 4 (𝜑 → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
41 eqid 2621 . . . . 5 (invg𝑊) = (invg𝑊)
422, 15, 41, 6grpsubval 17405 . . . 4 (((𝑎 · 𝑋) ∈ 𝑉 ∧ (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉) → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
4318, 40, 42syl2anc 692 . . 3 (𝜑 → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
442, 3, 4, 5, 6, 9, 10, 11, 38lmodsubdi 18860 . . 3 (𝜑 → (𝑎 · (𝑋 (𝑌 + 𝑍))) = ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))))
452, 15, 4, 3, 5lmodvsdi 18826 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝑎) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
469, 26, 13, 31, 45syl13anc 1325 . . . . 5 (𝜑 → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
472, 4, 3, 41, 5, 16, 9, 38, 10lmodvsneg 18847 . . . . 5 (𝜑 → ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))) = ((𝐼𝑎) · (𝑌 + 𝑍)))
48 baerlem3.o . . . . . . . . . 10 0 = (0g𝑊)
49 baerlem3.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
50 baerlem5a.e1 . . . . . . . . . 10 (𝜑𝑒𝐵)
51 baerlem5a.d1 . . . . . . . . . . 11 (𝜑𝑑𝐵)
525, 16grpinvcl 17407 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
5324, 51, 52syl2anc 692 . . . . . . . . . 10 (𝜑 → (𝐼𝑑) ∈ 𝐵)
54 baerlem3.d . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
55 eqid 2621 . . . . . . . . . . . 12 (LSubSp‘𝑊) = (LSubSp‘𝑊)
562, 55, 49, 9, 13, 31lspprcl 18918 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
57 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
582, 15, 3, 4, 5, 49, 9, 26, 29, 13, 31lsppreli 19030 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
592, 15, 3, 4, 5, 49, 9, 50, 53, 13, 31lsppreli 19030 . . . . . . . . . . . 12 (𝜑 → ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
60 baerlem5a.j2 . . . . . . . . . . . . 13 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
612, 3, 4, 5, 6, 9, 51, 11, 31lmodsubdi 18860 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) (𝑑 · 𝑍)))
622, 4, 3, 5lmodvscl 18820 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
639, 51, 11, 62syl3anc 1323 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
642, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31lmodsubvs 18859 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑑 · 𝑋) (𝑑 · 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6561, 64eqtrd 2655 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6665oveq1d 6630 . . . . . . . . . . . . . 14 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)))
67 lmodabl 18850 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
687, 8, 673syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Abel)
692, 4, 3, 5lmodvscl 18820 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
709, 53, 31, 69syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
712, 4, 3, 5lmodvscl 18820 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑌𝑉) → (𝑒 · 𝑌) ∈ 𝑉)
729, 50, 13, 71syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → (𝑒 · 𝑌) ∈ 𝑉)
732, 15, 68, 63, 70, 72abl32 18154 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)))
742, 15lmodass 18818 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ ((𝑑 · 𝑋) ∈ 𝑉 ∧ (𝑒 · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉)) → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
759, 63, 72, 70, 74syl13anc 1325 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7666, 73, 753eqtrd 2659 . . . . . . . . . . . . 13 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7760, 36, 763eqtr3d 2663 . . . . . . . . . . . 12 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
782, 15, 4, 5, 3, 55, 7, 56, 11, 57, 58, 59, 10, 51, 77lvecindp 19078 . . . . . . . . . . 11 (𝜑 → (𝑎 = 𝑑 ∧ (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7978simprd 479 . . . . . . . . . 10 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)))
802, 15, 4, 5, 3, 48, 49, 7, 12, 30, 26, 29, 50, 53, 54, 79lvecindp2 19079 . . . . . . . . 9 (𝜑 → ((𝐼𝑎) = 𝑒𝑏 = (𝐼𝑑)))
8180simprd 479 . . . . . . . 8 (𝜑𝑏 = (𝐼𝑑))
8278simpld 475 . . . . . . . . 9 (𝜑𝑎 = 𝑑)
8382fveq2d 6162 . . . . . . . 8 (𝜑 → (𝐼𝑎) = (𝐼𝑑))
8481, 83eqtr4d 2658 . . . . . . 7 (𝜑𝑏 = (𝐼𝑎))
8584oveq1d 6630 . . . . . 6 (𝜑 → (𝑏 · 𝑍) = ((𝐼𝑎) · 𝑍))
8685oveq2d 6631 . . . . 5 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
8746, 47, 863eqtr4rd 2666 . . . 4 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))))
8887oveq2d 6631 . . 3 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
8943, 44, 883eqtr4rd 2666 . 2 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = (𝑎 · (𝑋 (𝑌 + 𝑍))))
9036, 89eqtrd 2655 1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1480  wcel 1987  wne 2790  cdif 3557  {csn 4155  {cpr 4157  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040  Grpcgrp 17362  invgcminusg 17363  -gcsg 17364  LSSumclsm 17989  Abelcabl 18134  Ringcrg 18487  LModclmod 18803  LSubSpclss 18872  LSpanclspn 18911  LVecclvec 19042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043
This theorem is referenced by:  baerlem5alem2  36519
  Copyright terms: Public domain W3C validator