Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem2 Structured version   Visualization version   GIF version

Theorem baerlem5alem2 36501
Description: Lemma for baerlem5a 36504. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5alem2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5alem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . 7 + = (+g𝑊)
3 baerlem3.m . . . . . . 7 = (-g𝑊)
4 baerlem3.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
5 lveclmod 19028 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
7 lmodabl 18834 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
9 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
10 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3568 . . . . . . 7 (𝜑𝑌𝑉)
12 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3568 . . . . . . 7 (𝜑𝑍𝑉)
141, 2, 3, 8, 9, 11, 13ablsubsub4 18148 . . . . . 6 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
1514sneqd 4162 . . . . 5 (𝜑 → {((𝑋 𝑌) 𝑍)} = {(𝑋 (𝑌 + 𝑍))})
1615fveq2d 6154 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
171, 3lmodvsubcl 18832 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
186, 9, 11, 17syl3anc 1323 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
19 baerlem3.s . . . . . 6 = (LSSum‘𝑊)
20 baerlem3.n . . . . . 6 𝑁 = (LSpan‘𝑊)
211, 3, 19, 20lspsntrim 19020 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉𝑍𝑉) → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
226, 18, 13, 21syl3anc 1323 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
2316, 22eqsstr3d 3621 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
241, 3, 8, 9, 13, 11ablsub32 18151 . . . . . . 7 (𝜑 → ((𝑋 𝑍) 𝑌) = ((𝑋 𝑌) 𝑍))
2524, 14eqtrd 2655 . . . . . 6 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑌 + 𝑍)))
2625sneqd 4162 . . . . 5 (𝜑 → {((𝑋 𝑍) 𝑌)} = {(𝑋 (𝑌 + 𝑍))})
2726fveq2d 6154 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
281, 3lmodvsubcl 18832 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
296, 9, 13, 28syl3anc 1323 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
301, 3, 19, 20lspsntrim 19020 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉𝑌𝑉) → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
316, 29, 11, 30syl3anc 1323 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3227, 31eqsstr3d 3621 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3323, 32ssind 3817 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
34 elin 3776 . . . . 5 (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
35 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
36 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
37 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
381, 2, 35, 36, 37, 19, 20, 6, 18, 13lsmspsn 19006 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))))
391, 2, 35, 36, 37, 19, 20, 6, 29, 11lsmspsn 19006 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))))
4038, 39anbi12d 746 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
4134, 40syl5bb 272 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
42 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
43 simp11 1089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝜑)
4443, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LVec)
4543, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑋𝑉)
46 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4743, 46syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
48 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4943, 48syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
5043, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5143, 12syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
52 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
53 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
54 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
55 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
56 simp12l 1172 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑎𝐵)
57 simp12r 1173 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑏𝐵)
58 simp2l 1085 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑑𝐵)
59 simp2r 1086 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑒𝐵)
60 simp13 1091 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
61 simp3 1061 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
621, 3, 42, 19, 20, 44, 45, 47, 49, 50, 51, 2, 37, 35, 36, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61baerlem5alem1 36498 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
6343, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LMod)
641, 2lmodvacl 18801 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
656, 11, 13, 64syl3anc 1323 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
661, 3lmodvsubcl 18832 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
676, 9, 65, 66syl3anc 1323 . . . . . . . . . . . 12 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
6843, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
691, 37, 35, 36, 20, 63, 56, 68lspsneli 18923 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑎 · (𝑋 (𝑌 + 𝑍))) ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7062, 69eqeltrd 2698 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
71703exp 1261 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7271rexlimdvv 3030 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
73723exp 1261 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))))
7473rexlimdvv 3030 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7574impd 447 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7641, 75sylbid 230 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7776ssrdv 3590 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ⊆ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7833, 77eqssd 3601 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cdif 3553  cin 3555  wss 3556  {csn 4150  {cpr 4152  cfv 5849  (class class class)co 6607  Basecbs 15784  +gcplusg 15865  Scalarcsca 15868   ·𝑠 cvsca 15869  0gc0g 16024  invgcminusg 17347  -gcsg 17348  LSSumclsm 17973  Abelcabl 18118  LModclmod 18787  LSpanclspn 18893  LVecclvec 19024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-cntz 17674  df-lsm 17975  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-drng 18673  df-lmod 18789  df-lss 18855  df-lsp 18894  df-lvec 19025
This theorem is referenced by:  baerlem5a  36504
  Copyright terms: Public domain W3C validator