Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5amN Structured version   Visualization version   GIF version

Theorem baerlem5amN 38851
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction version of first equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 38853 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5amN (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5amN
StepHypRef Expression
1 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3947 . . . . . 6 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3947 . . . . . 6 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . . 7 + = (+g𝑊)
7 eqid 2821 . . . . . . 7 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . . 7 = (-g𝑊)
95, 6, 7, 8grpsubval 18148 . . . . . 6 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 586 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110oveq2d 7171 . . . 4 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑌 + ((invg𝑊)‘𝑍))))
1211sneqd 4578 . . 3 (𝜑 → {(𝑋 (𝑌 𝑍))} = {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))})
1312fveq2d 6673 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}))
14 baerlem3.o . . 3 0 = (0g𝑊)
15 baerlem3.s . . 3 = (LSSum‘𝑊)
16 baerlem3.n . . 3 𝑁 = (LSpan‘𝑊)
17 baerlem3.w . . 3 (𝜑𝑊 ∈ LVec)
18 baerlem3.x . . 3 (𝜑𝑋𝑉)
19 lveclmod 19877 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2017, 19syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
215, 7lmodvnegcl 19674 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2220, 4, 21syl2anc 586 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
23 eqid 2821 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
245, 23, 16, 20, 2, 4lspprcl 19749 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
25 baerlem3.c . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2614, 23, 20, 24, 18, 25lssneln0 19723 . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
275, 16, 17, 18, 2, 4, 25lspindpi 19903 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simpld 497 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
295, 14, 16, 17, 26, 2, 28lspsnne1 19888 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
30 baerlem3.d . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3130necomd 3071 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
325, 14, 16, 17, 3, 2, 31lspsnne1 19888 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
335, 16, 17, 18, 4, 2, 32, 25lspexchn2 19902 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
34 lmodgrp 19640 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3517, 19, 343syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
3635adantr 483 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
374adantr 483 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
385, 7grpinvinv 18165 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3936, 37, 38syl2anc 586 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
4020adantr 483 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
415, 23, 16, 20, 2, 18lspprcl 19749 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4241adantr 483 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
43 simpr 487 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4423, 7lssvnegcl 19727 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4540, 42, 43, 44syl3anc 1367 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4639, 45eqeltrrd 2914 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4733, 46mtand 814 . . . 4 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
485, 16, 17, 22, 18, 2, 29, 47lspexchn2 19902 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
495, 7, 16lspsnneg 19777 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5020, 4, 49syl2anc 586 . . . 4 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5130, 50neeqtrrd 3090 . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
525, 14, 7grpinvnzcl 18170 . . . 4 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5335, 3, 52syl2anc 586 . . 3 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
545, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5a 38849 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))))
5550oveq2d 7171 . . 3 (𝜑 → ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
565, 6, 8, 7, 35, 18, 4grpsubinv 18171 . . . . . 6 (𝜑 → (𝑋 ((invg𝑊)‘𝑍)) = (𝑋 + 𝑍))
5756sneqd 4578 . . . . 5 (𝜑 → {(𝑋 ((invg𝑊)‘𝑍))} = {(𝑋 + 𝑍)})
5857fveq2d 6673 . . . 4 (𝜑 → (𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) = (𝑁‘{(𝑋 + 𝑍)}))
5958oveq1d 7170 . . 3 (𝜑 → ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌})) = ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌})))
6055, 59ineq12d 4189 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6113, 54, 603eqtrd 2860 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  cin 3934  {csn 4566  {cpr 4568  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  0gc0g 16712  Grpcgrp 18102  invgcminusg 18103  -gcsg 18104  LSSumclsm 18758  LModclmod 19633  LSubSpclss 19702  LSpanclspn 19742  LVecclvec 19873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator