![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 964 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 213 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: pm5.44 970 exmoeu2 2525 ssnelpss 3751 brinxp 5215 copsex2ga 5264 canth 6648 riotaxfrd 6682 iscard 8839 kmlem14 9023 ltxrlt 10146 elioo5 12269 prmind2 15445 pcelnn 15621 isnirred 18746 isreg2 21229 comppfsc 21383 kqcldsat 21584 elmptrab 21678 itg2uba 23555 prmorcht 24949 adjeq 28922 lnopcnbd 29023 cvexchlem 29355 maprnin 29634 topfne 32474 ismblfin 33580 ftc1anclem5 33619 isdmn2 33984 cdlemefrs29pre00 36000 cdlemefrs29cpre1 36003 isdomn3 38099 elmapintab 38219 bits0ALTV 41915 |
Copyright terms: Public domain | W3C validator |