Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   GIF version

Theorem ballotlem4 29693
Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlem4 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 nnaddcl 10889 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 703 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
5 elnnuz 11556 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℕ ↔ (𝑀 + 𝑁) ∈ (ℤ‘1))
64, 5mpbi 218 . . . . . 6 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 12174 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7ax-mp 5 . . . . 5 1 ∈ (1...(𝑀 + 𝑁))
9 0le1 10400 . . . . . . . . . 10 0 ≤ 1
10 0re 9896 . . . . . . . . . . 11 0 ∈ ℝ
11 1re 9895 . . . . . . . . . . 11 1 ∈ ℝ
1210, 11lenlti 10008 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
139, 12mpbi 218 . . . . . . . . 9 ¬ 1 < 0
14 ltsub13 10358 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (0 − 1) ↔ 1 < (0 − 0)))
1510, 10, 11, 14mp3an 1415 . . . . . . . . . 10 (0 < (0 − 1) ↔ 1 < (0 − 0))
16 0m0e0 10977 . . . . . . . . . . 11 (0 − 0) = 0
1716breq2i 4585 . . . . . . . . . 10 (1 < (0 − 0) ↔ 1 < 0)
1815, 17bitri 262 . . . . . . . . 9 (0 < (0 − 1) ↔ 1 < 0)
1913, 18mtbir 311 . . . . . . . 8 ¬ 0 < (0 − 1)
20 1m1e0 10936 . . . . . . . . . . . 12 (1 − 1) = 0
2120fveq2i 6091 . . . . . . . . . . 11 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
22 ballotth.o . . . . . . . . . . . 12 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
23 ballotth.p . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
24 ballotth.f . . . . . . . . . . . 12 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
251, 2, 22, 23, 24ballotlemfval0 29690 . . . . . . . . . . 11 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2621, 25syl5eq 2655 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘(1 − 1)) = 0)
2726oveq1d 6542 . . . . . . . . 9 (𝐶𝑂 → (((𝐹𝐶)‘(1 − 1)) − 1) = (0 − 1))
2827breq2d 4589 . . . . . . . 8 (𝐶𝑂 → (0 < (((𝐹𝐶)‘(1 − 1)) − 1) ↔ 0 < (0 − 1)))
2919, 28mtbiri 315 . . . . . . 7 (𝐶𝑂 → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
3029adantr 479 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
31 simpl 471 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 𝐶𝑂)
32 1nn 10878 . . . . . . . . . . . 12 1 ∈ ℕ
3332a1i 11 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 1 ∈ ℕ)
341, 2, 22, 23, 24, 31, 33ballotlemfp1 29686 . . . . . . . . . 10 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3534simpld 473 . . . . . . . . 9 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
368, 35mpan2 702 . . . . . . . 8 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3736imp 443 . . . . . . 7 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
3837breq2d 4589 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → (0 < ((𝐹𝐶)‘1) ↔ 0 < (((𝐹𝐶)‘(1 − 1)) − 1)))
3930, 38mtbird 313 . . . . 5 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < ((𝐹𝐶)‘1))
40 fveq2 6088 . . . . . . . 8 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4140breq2d 4589 . . . . . . 7 (𝑖 = 1 → (0 < ((𝐹𝐶)‘𝑖) ↔ 0 < ((𝐹𝐶)‘1)))
4241notbid 306 . . . . . 6 (𝑖 = 1 → (¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ 0 < ((𝐹𝐶)‘1)))
4342rspcev 3281 . . . . 5 ((1 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 0 < ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
448, 39, 43sylancr 693 . . . 4 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
45 rexnal 2977 . . . 4 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4644, 45sylib 206 . . 3 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
47 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
481, 2, 22, 23, 24, 47ballotleme 29691 . . . 4 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4948simprbi 478 . . 3 (𝐶𝐸 → ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
5046, 49nsyl 133 . 2 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 𝐶𝐸)
5150ex 448 1 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896  {crab 2899  cdif 3536  cin 3538  𝒫 cpw 4107   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  cz 11210  cuz 11519  ...cfz 12152  #chash 12934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-hash 12935
This theorem is referenced by:  ballotth  29732
  Copyright terms: Public domain W3C validator