Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   GIF version

Theorem ballotlem4 30869
Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlem4 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 nnaddcl 11234 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 710 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
5 elnnuz 11917 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℕ ↔ (𝑀 + 𝑁) ∈ (ℤ‘1))
64, 5mpbi 220 . . . . . 6 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 12541 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7ax-mp 5 . . . . 5 1 ∈ (1...(𝑀 + 𝑁))
9 0le1 10743 . . . . . . . . . 10 0 ≤ 1
10 0re 10232 . . . . . . . . . . 11 0 ∈ ℝ
11 1re 10231 . . . . . . . . . . 11 1 ∈ ℝ
1210, 11lenlti 10349 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
139, 12mpbi 220 . . . . . . . . 9 ¬ 1 < 0
14 ltsub13 10701 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (0 − 1) ↔ 1 < (0 − 0)))
1510, 10, 11, 14mp3an 1573 . . . . . . . . . 10 (0 < (0 − 1) ↔ 1 < (0 − 0))
16 0m0e0 11322 . . . . . . . . . . 11 (0 − 0) = 0
1716breq2i 4812 . . . . . . . . . 10 (1 < (0 − 0) ↔ 1 < 0)
1815, 17bitri 264 . . . . . . . . 9 (0 < (0 − 1) ↔ 1 < 0)
1913, 18mtbir 312 . . . . . . . 8 ¬ 0 < (0 − 1)
20 1m1e0 11281 . . . . . . . . . . . 12 (1 − 1) = 0
2120fveq2i 6355 . . . . . . . . . . 11 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
22 ballotth.o . . . . . . . . . . . 12 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
23 ballotth.p . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
24 ballotth.f . . . . . . . . . . . 12 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
251, 2, 22, 23, 24ballotlemfval0 30866 . . . . . . . . . . 11 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2621, 25syl5eq 2806 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘(1 − 1)) = 0)
2726oveq1d 6828 . . . . . . . . 9 (𝐶𝑂 → (((𝐹𝐶)‘(1 − 1)) − 1) = (0 − 1))
2827breq2d 4816 . . . . . . . 8 (𝐶𝑂 → (0 < (((𝐹𝐶)‘(1 − 1)) − 1) ↔ 0 < (0 − 1)))
2919, 28mtbiri 316 . . . . . . 7 (𝐶𝑂 → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
3029adantr 472 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
31 simpl 474 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 𝐶𝑂)
32 1nn 11223 . . . . . . . . . . . 12 1 ∈ ℕ
3332a1i 11 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 1 ∈ ℕ)
341, 2, 22, 23, 24, 31, 33ballotlemfp1 30862 . . . . . . . . . 10 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3534simpld 477 . . . . . . . . 9 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
368, 35mpan2 709 . . . . . . . 8 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3736imp 444 . . . . . . 7 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
3837breq2d 4816 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → (0 < ((𝐹𝐶)‘1) ↔ 0 < (((𝐹𝐶)‘(1 − 1)) − 1)))
3930, 38mtbird 314 . . . . 5 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < ((𝐹𝐶)‘1))
40 fveq2 6352 . . . . . . . 8 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4140breq2d 4816 . . . . . . 7 (𝑖 = 1 → (0 < ((𝐹𝐶)‘𝑖) ↔ 0 < ((𝐹𝐶)‘1)))
4241notbid 307 . . . . . 6 (𝑖 = 1 → (¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ 0 < ((𝐹𝐶)‘1)))
4342rspcev 3449 . . . . 5 ((1 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 0 < ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
448, 39, 43sylancr 698 . . . 4 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
45 rexnal 3133 . . . 4 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4644, 45sylib 208 . . 3 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
47 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
481, 2, 22, 23, 24, 47ballotleme 30867 . . . 4 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4948simprbi 483 . . 3 (𝐶𝐸 → ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
5046, 49nsyl 135 . 2 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 𝐶𝐸)
5150ex 449 1 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  {crab 3054  cdif 3712  cin 3714  𝒫 cpw 4302   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  cz 11569  cuz 11879  ...cfz 12519  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312
This theorem is referenced by:  ballotth  30908
  Copyright terms: Public domain W3C validator