![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfmpn | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
Ref | Expression |
---|---|
ballotlemfmpn | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) | |
6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
7 | nnaddcl 11080 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
8 | 1, 2, 7 | mp2an 708 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
9 | 8 | nnzi 11439 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℤ |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (𝑀 + 𝑁) ∈ ℤ) |
11 | 1, 2, 3, 4, 5, 6, 10 | ballotlemfval 30679 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)))) |
12 | ssrab2 3720 | . . . . . . . . 9 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) | |
13 | 3, 12 | eqsstri 3668 | . . . . . . . 8 ⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
14 | 13 | sseli 3632 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
15 | 14 | elpwid 4203 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
16 | sseqin2 3850 | . . . . . 6 ⊢ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) | |
17 | 15, 16 | sylib 208 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) |
18 | 17 | fveq2d 6233 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (#‘𝐶)) |
19 | rabssab 3723 | . . . . . . 7 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (#‘𝑐) = 𝑀} | |
20 | 19 | sseli 3632 | . . . . . 6 ⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀}) |
21 | 20, 3 | eleq2s 2748 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀}) |
22 | fveq2 6229 | . . . . . . 7 ⊢ (𝑏 = 𝐶 → (#‘𝑏) = (#‘𝐶)) | |
23 | 22 | eqeq1d 2653 | . . . . . 6 ⊢ (𝑏 = 𝐶 → ((#‘𝑏) = 𝑀 ↔ (#‘𝐶) = 𝑀)) |
24 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑐 = 𝑏 → (#‘𝑐) = (#‘𝑏)) | |
25 | 24 | eqeq1d 2653 | . . . . . . 7 ⊢ (𝑐 = 𝑏 → ((#‘𝑐) = 𝑀 ↔ (#‘𝑏) = 𝑀)) |
26 | 25 | cbvabv 2776 | . . . . . 6 ⊢ {𝑐 ∣ (#‘𝑐) = 𝑀} = {𝑏 ∣ (#‘𝑏) = 𝑀} |
27 | 23, 26 | elab2g 3385 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀} ↔ (#‘𝐶) = 𝑀)) |
28 | 21, 27 | mpbid 222 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (#‘𝐶) = 𝑀) |
29 | 18, 28 | eqtrd 2685 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀) |
30 | fzfi 12811 | . . . . 5 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
31 | hashssdif 13238 | . . . . 5 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶))) | |
32 | 30, 15, 31 | sylancr 696 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶))) |
33 | 8 | nnnn0i 11338 | . . . . . 6 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
34 | hashfz1 13174 | . . . . . 6 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
35 | 33, 34 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) |
36 | 35, 28 | oveq12d 6708 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)) = ((𝑀 + 𝑁) − 𝑀)) |
37 | 1 | nncni 11068 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
38 | 2 | nncni 11068 | . . . . . 6 ⊢ 𝑁 ∈ ℂ |
39 | pncan2 10326 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
40 | 37, 38, 39 | mp2an 708 | . . . . 5 ⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
42 | 32, 36, 41 | 3eqtrd 2689 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁) |
43 | 29, 42 | oveq12d 6708 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀 − 𝑁)) |
44 | 11, 43 | eqtrd 2685 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {cab 2637 {crab 2945 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 𝒫 cpw 4191 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 ℂcc 9972 1c1 9975 + caddc 9977 − cmin 10304 / cdiv 10722 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: ballotlem5 30689 |
Copyright terms: Public domain | W3C validator |