Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   GIF version

Theorem ballotlemfmpn 30684
Description: (𝐹𝐶) finishes counting at (𝑀𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfmpn (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfmpn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 nnaddcl 11080 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
81, 2, 7mp2an 708 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
98nnzi 11439 . . . 4 (𝑀 + 𝑁) ∈ ℤ
109a1i 11 . . 3 (𝐶𝑂 → (𝑀 + 𝑁) ∈ ℤ)
111, 2, 3, 4, 5, 6, 10ballotlemfval 30679 . 2 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))))
12 ssrab2 3720 . . . . . . . . 9 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
133, 12eqsstri 3668 . . . . . . . 8 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
1413sseli 3632 . . . . . . 7 (𝐶𝑂𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)))
1514elpwid 4203 . . . . . 6 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
16 sseqin2 3850 . . . . . 6 (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1715, 16sylib 208 . . . . 5 (𝐶𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1817fveq2d 6233 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (#‘𝐶))
19 rabssab 3723 . . . . . . 7 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (#‘𝑐) = 𝑀}
2019sseli 3632 . . . . . 6 (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
2120, 3eleq2s 2748 . . . . 5 (𝐶𝑂𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀})
22 fveq2 6229 . . . . . . 7 (𝑏 = 𝐶 → (#‘𝑏) = (#‘𝐶))
2322eqeq1d 2653 . . . . . 6 (𝑏 = 𝐶 → ((#‘𝑏) = 𝑀 ↔ (#‘𝐶) = 𝑀))
24 fveq2 6229 . . . . . . . 8 (𝑐 = 𝑏 → (#‘𝑐) = (#‘𝑏))
2524eqeq1d 2653 . . . . . . 7 (𝑐 = 𝑏 → ((#‘𝑐) = 𝑀 ↔ (#‘𝑏) = 𝑀))
2625cbvabv 2776 . . . . . 6 {𝑐 ∣ (#‘𝑐) = 𝑀} = {𝑏 ∣ (#‘𝑏) = 𝑀}
2723, 26elab2g 3385 . . . . 5 (𝐶𝑂 → (𝐶 ∈ {𝑐 ∣ (#‘𝑐) = 𝑀} ↔ (#‘𝐶) = 𝑀))
2821, 27mpbid 222 . . . 4 (𝐶𝑂 → (#‘𝐶) = 𝑀)
2918, 28eqtrd 2685 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀)
30 fzfi 12811 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
31 hashssdif 13238 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
3230, 15, 31sylancr 696 . . . 4 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)))
338nnnn0i 11338 . . . . . 6 (𝑀 + 𝑁) ∈ ℕ0
34 hashfz1 13174 . . . . . 6 ((𝑀 + 𝑁) ∈ ℕ0 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3533, 34mp1i 13 . . . . 5 (𝐶𝑂 → (#‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3635, 28oveq12d 6708 . . . 4 (𝐶𝑂 → ((#‘(1...(𝑀 + 𝑁))) − (#‘𝐶)) = ((𝑀 + 𝑁) − 𝑀))
371nncni 11068 . . . . . 6 𝑀 ∈ ℂ
382nncni 11068 . . . . . 6 𝑁 ∈ ℂ
39 pncan2 10326 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4037, 38, 39mp2an 708 . . . . 5 ((𝑀 + 𝑁) − 𝑀) = 𝑁
4140a1i 11 . . . 4 (𝐶𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4232, 36, 413eqtrd 2689 . . 3 (𝐶𝑂 → (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁)
4329, 42oveq12d 6708 . 2 (𝐶𝑂 → ((#‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (#‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀𝑁))
4411, 43eqtrd 2685 1 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {cab 2637  {crab 2945  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191  cmpt 4762  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  1c1 9975   + caddc 9977  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  #chash 13157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158
This theorem is referenced by:  ballotlem5  30689
  Copyright terms: Public domain W3C validator