Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval Structured version   Visualization version   GIF version

Theorem ballotlemfval 31742
Description: The value of F. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfval (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
2 simpl 485 . . . . . . . 8 ((𝑏 = 𝐶𝑖 ∈ ℤ) → 𝑏 = 𝐶)
32ineq2d 4188 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝐶))
43fveq2d 6668 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝐶)))
52difeq2d 4098 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝐶))
65fveq2d 6668 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝐶)))
74, 6oveq12d 7168 . . . . 5 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))))
87mpteq2dva 5153 . . . 4 (𝑏 = 𝐶 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
9 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 ineq2 4182 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝑐))
1110fveq2d 6668 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝑐)))
12 difeq2 4092 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝑐))
1312fveq2d 6668 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝑐)))
1411, 13oveq12d 7168 . . . . . . 7 (𝑏 = 𝑐 → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))
1514mpteq2dv 5154 . . . . . 6 (𝑏 = 𝑐 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
1615cbvmptv 5161 . . . . 5 (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))))) = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
179, 16eqtr4i 2847 . . . 4 𝐹 = (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))))
18 zex 11984 . . . . 5 ℤ ∈ V
1918mptex 6980 . . . 4 (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))) ∈ V
208, 17, 19fvmpt 6762 . . 3 (𝐶𝑂 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
211, 20syl 17 . 2 (𝜑 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
22 oveq2 7158 . . . . . 6 (𝑖 = 𝐽 → (1...𝑖) = (1...𝐽))
2322ineq1d 4187 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∩ 𝐶) = ((1...𝐽) ∩ 𝐶))
2423fveq2d 6668 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∩ 𝐶)) = (♯‘((1...𝐽) ∩ 𝐶)))
2522difeq1d 4097 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∖ 𝐶) = ((1...𝐽) ∖ 𝐶))
2625fveq2d 6668 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∖ 𝐶)) = (♯‘((1...𝐽) ∖ 𝐶)))
2724, 26oveq12d 7168 . . 3 (𝑖 = 𝐽 → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
2827adantl 484 . 2 ((𝜑𝑖 = 𝐽) → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
29 ballotlemfval.j . 2 (𝜑𝐽 ∈ ℤ)
30 ovexd 7185 . 2 (𝜑 → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ V)
3121, 28, 29, 30fvmptd 6769 1 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  𝒫 cpw 4538  cmpt 5138  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534  cmin 10864   / cdiv 11291  cn 11632  cz 11975  ...cfz 12886  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-neg 10867  df-z 11976
This theorem is referenced by:  ballotlemfelz  31743  ballotlemfp1  31744  ballotlemfmpn  31747  ballotlemfval0  31748  ballotlemfg  31778  ballotlemfrc  31779
  Copyright terms: Public domain W3C validator