Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgun Structured version   Visualization version   GIF version

Theorem ballotlemgun 31784
Description: A property of the defined operator. (Contributed by Thierry Arnoux, 26-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
ballotlemgun.1 (𝜑𝑈 ∈ Fin)
ballotlemgun.2 (𝜑𝑉 ∈ Fin)
ballotlemgun.3 (𝜑𝑊 ∈ Fin)
ballotlemgun.4 (𝜑 → (𝑉𝑊) = ∅)
Assertion
Ref Expression
ballotlemgun (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐼   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑢,𝑈,𝑣   𝑢,𝑉,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝑈(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)   𝑉(𝑥,𝑖,𝑘,𝑐)   𝑊(𝑥,𝑖,𝑘,𝑐)

Proof of Theorem ballotlemgun
StepHypRef Expression
1 indir 4254 . . . . . 6 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
21fveq2i 6675 . . . . 5 (♯‘((𝑉𝑊) ∩ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
3 ballotlemgun.2 . . . . . . 7 (𝜑𝑉 ∈ Fin)
4 infi 8744 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
6 ballotlemgun.3 . . . . . . 7 (𝜑𝑊 ∈ Fin)
7 infi 8744 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
86, 7syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
9 ballotlemgun.4 . . . . . . . 8 (𝜑 → (𝑉𝑊) = ∅)
109ineq1d 4190 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∩ 𝑈) = (∅ ∩ 𝑈))
11 inindir 4206 . . . . . . 7 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
12 0in 4349 . . . . . . 7 (∅ ∩ 𝑈) = ∅
1310, 11, 123eqtr3g 2881 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
14 hashun 13746 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
155, 8, 13, 14syl3anc 1367 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
162, 15syl5eq 2870 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∩ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
17 difundir 4259 . . . . . 6 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
1817fveq2i 6675 . . . . 5 (♯‘((𝑉𝑊) ∖ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
19 diffi 8752 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
203, 19syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
21 diffi 8752 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
226, 21syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
239difeq1d 4100 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∖ 𝑈) = (∅ ∖ 𝑈))
24 difindir 4261 . . . . . . 7 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
25 0dif 4357 . . . . . . 7 (∅ ∖ 𝑈) = ∅
2623, 24, 253eqtr3g 2881 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
27 hashun 13746 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2820, 22, 26, 27syl3anc 1367 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2918, 28syl5eq 2870 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∖ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
3016, 29oveq12d 7176 . . 3 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))))
31 hashcl 13720 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
323, 4, 313syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3332nn0cnd 11960 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
34 hashcl 13720 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
356, 7, 343syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
3635nn0cnd 11960 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
37 hashcl 13720 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
383, 19, 373syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3938nn0cnd 11960 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
40 hashcl 13720 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
416, 21, 403syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
4241nn0cnd 11960 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
4333, 36, 39, 42addsub4d 11046 . . 3 (𝜑 → (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
4430, 43eqtrd 2858 . 2 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
45 ballotlemgun.1 . . 3 (𝜑𝑈 ∈ Fin)
46 unfi 8787 . . . 4 ((𝑉 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑉𝑊) ∈ Fin)
473, 6, 46syl2anc 586 . . 3 (𝜑 → (𝑉𝑊) ∈ Fin)
48 ballotth.m . . . 4 𝑀 ∈ ℕ
49 ballotth.n . . . 4 𝑁 ∈ ℕ
50 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
51 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
52 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
53 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
54 ballotth.mgtn . . . 4 𝑁 < 𝑀
55 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
56 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
57 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
58 ballotlemg . . . 4 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
5948, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 31783 . . 3 ((𝑈 ∈ Fin ∧ (𝑉𝑊) ∈ Fin) → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6045, 47, 59syl2anc 586 . 2 (𝜑 → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6148, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 31783 . . . 4 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6245, 3, 61syl2anc 586 . . 3 (𝜑 → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6348, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 31783 . . . 4 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6445, 6, 63syl2anc 586 . . 3 (𝜑 → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6562, 64oveq12d 7176 . 2 (𝜑 → ((𝑈 𝑉) + (𝑈 𝑊)) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
6644, 60, 653eqtr4d 2868 1 (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3140  {crab 3144  cdif 3935  cun 3936  cin 3937  c0 4293  ifcif 4469  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  cima 5560  cfv 6357  (class class class)co 7158  cmpo 7160  Fincfn 8511  infcinf 8907  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-hash 13694
This theorem is referenced by:  ballotlemfrceq  31788
  Copyright terms: Public domain W3C validator