![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemgval | Structured version Visualization version GIF version |
Description: Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
ballotlemg | ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣 ∩ 𝑢)) − (#‘(𝑣 ∖ 𝑢)))) |
Ref | Expression |
---|---|
ballotlemgval | ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((#‘(𝑉 ∩ 𝑈)) − (#‘(𝑉 ∖ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 3841 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∩ 𝑢) = (𝑣 ∩ 𝑈)) | |
2 | 1 | fveq2d 6233 | . . 3 ⊢ (𝑢 = 𝑈 → (#‘(𝑣 ∩ 𝑢)) = (#‘(𝑣 ∩ 𝑈))) |
3 | difeq2 3755 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑣 ∖ 𝑢) = (𝑣 ∖ 𝑈)) | |
4 | 3 | fveq2d 6233 | . . 3 ⊢ (𝑢 = 𝑈 → (#‘(𝑣 ∖ 𝑢)) = (#‘(𝑣 ∖ 𝑈))) |
5 | 2, 4 | oveq12d 6708 | . 2 ⊢ (𝑢 = 𝑈 → ((#‘(𝑣 ∩ 𝑢)) − (#‘(𝑣 ∖ 𝑢))) = ((#‘(𝑣 ∩ 𝑈)) − (#‘(𝑣 ∖ 𝑈)))) |
6 | ineq1 3840 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑈) = (𝑉 ∩ 𝑈)) | |
7 | 6 | fveq2d 6233 | . . 3 ⊢ (𝑣 = 𝑉 → (#‘(𝑣 ∩ 𝑈)) = (#‘(𝑉 ∩ 𝑈))) |
8 | difeq1 3754 | . . . 4 ⊢ (𝑣 = 𝑉 → (𝑣 ∖ 𝑈) = (𝑉 ∖ 𝑈)) | |
9 | 8 | fveq2d 6233 | . . 3 ⊢ (𝑣 = 𝑉 → (#‘(𝑣 ∖ 𝑈)) = (#‘(𝑉 ∖ 𝑈))) |
10 | 7, 9 | oveq12d 6708 | . 2 ⊢ (𝑣 = 𝑉 → ((#‘(𝑣 ∩ 𝑈)) − (#‘(𝑣 ∖ 𝑈))) = ((#‘(𝑉 ∩ 𝑈)) − (#‘(𝑉 ∖ 𝑈)))) |
11 | ballotlemg | . 2 ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣 ∩ 𝑢)) − (#‘(𝑣 ∖ 𝑢)))) | |
12 | ovex 6718 | . 2 ⊢ ((#‘(𝑉 ∩ 𝑈)) − (#‘(𝑉 ∖ 𝑈))) ∈ V | |
13 | 5, 10, 11, 12 | ovmpt2 6838 | 1 ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((#‘(𝑉 ∩ 𝑈)) − (#‘(𝑉 ∖ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ∖ cdif 3604 ∩ cin 3606 ifcif 4119 𝒫 cpw 4191 class class class wbr 4685 ↦ cmpt 4762 “ cima 5146 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 Fincfn 7997 infcinf 8388 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 − cmin 10304 / cdiv 10722 ℕcn 11058 ℤcz 11415 ...cfz 12364 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 |
This theorem is referenced by: ballotlemgun 30714 ballotlemfg 30715 ballotlemfrc 30716 |
Copyright terms: Public domain | W3C validator |