Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemic Structured version   Visualization version   GIF version

Theorem ballotlemic 30696
Description: If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemic ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemic
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 3765 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 762 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 30691 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 474 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 12408 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemi1 30692 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 11800 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 699 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 11801 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 480 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 11762 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 206 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 12386 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 480 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 1nn 11069 . . . . . . . . . . 11 1 ∈ ℕ
2827a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
291, 2, 3, 4, 5, 6, 28ballotlemfp1 30681 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3029simpld 474 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3130imp 444 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
32 1m1e0 11127 . . . . . . . . . 10 (1 − 1) = 0
3332fveq2i 6232 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3433oveq1i 6700 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1)
3534a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1))
361, 2, 3, 4, 5ballotlemfval0 30685 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
376, 36syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
3837adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
3938oveq1d 6705 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) − 1) = (0 − 1))
4031, 35, 393eqtrrd 2690 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘1))
41 0le1 10589 . . . . . . 7 0 ≤ 1
42 0re 10078 . . . . . . . 8 0 ∈ ℝ
43 1re 10077 . . . . . . . 8 1 ∈ ℝ
44 suble0 10580 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((0 − 1) ≤ 0 ↔ 0 ≤ 1))
4542, 43, 44mp2an 708 . . . . . . 7 ((0 − 1) ≤ 0 ↔ 0 ≤ 1)
4641, 45mpbir 221 . . . . . 6 (0 − 1) ≤ 0
4740, 46syl6eqbrr 4725 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
4847adantr 480 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘1) ≤ 0)
49 fveq2 6229 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
5049breq1d 4695 . . . . 5 (𝑖 = 1 → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘1) ≤ 0))
5150rspcev 3340 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘1) ≤ 0) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
5226, 48, 51syl2anc 694 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑖) ≤ 0)
53 0lt1 10588 . . . . 5 0 < 1
54 1p0e1 11171 . . . . . 6 (1 + 0) = 1
551, 2, 3, 4, 5, 6, 14ballotlemfp1 30681 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5655simpld 474 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)))
5756imp 444 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1))
5811simprd 478 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5958adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6057, 59eqtr3d 2687 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0)
616adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6214nnzd 11519 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6362adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
64 1zzd 11446 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6563, 64zsubcld 11525 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
661, 2, 3, 4, 5, 61, 65ballotlemfelz 30680 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6766zcnd 11521 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
68 1cnd 10094 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
69 0cnd 10071 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
7067, 68, 69subaddd 10448 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ((((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1) = 0 ↔ (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1))))
7160, 70mpbid 222 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → (1 + 0) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7254, 71syl5eqr 2699 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7353, 72syl5breq 4722 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
7473adantlr 751 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → 0 < ((𝐹𝐶)‘((𝐼𝐶) − 1)))
751, 2, 3, 4, 5, 7, 21, 52, 74ballotlemfc0 30682 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
761, 2, 3, 4, 5, 8, 9, 10ballotlemimin 30695 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7776ad2antrr 762 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ ¬ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7875, 77condan 852 1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cdif 3604  cin 3606  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  cz 11415  cuz 11725  ...cfz 12364  #chash 13157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158
This theorem is referenced by:  ballotlem7  30725
  Copyright terms: Public domain W3C validator