Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv0 Structured version   Visualization version   GIF version

Theorem ballotlemrinv0 30372
Description: Lemma for ballotlemrinv 30373. (Contributed by Thierry Arnoux, 18-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘   𝐷,𝑖,𝑘   𝑆,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝐶(𝑐)   𝐷(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv0
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . 6 𝑁 < 𝑀
8 ballotth.i . . . . . 6 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . 6 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrval 30357 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
1211adantr 481 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
13 simpr 477 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 = ((𝑆𝐶) “ 𝐶))
1412, 13eqtr4d 2658 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = 𝐷)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 30370 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
1615adantr 481 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) ∈ (𝑂𝐸))
1714, 16eqeltrrd 2699 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂𝐸))
181, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 30353 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1918simprd 479 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
2019adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2120eqcomd 2627 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2221, 13imaeq12d 5426 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)))
23 simpl 473 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂𝐸))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemirc 30371 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2524adantr 481 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2614fveq2d 6152 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐷))
2725, 26eqtr3d 2657 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼𝐶) = (𝐼𝐷))
281, 2, 3, 4, 5, 6, 7, 8, 9ballotlemieq 30356 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
2923, 17, 27, 28syl3anc 1323 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐷))
3029imaeq1d 5424 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐷) “ 𝐷))
3118simpld 475 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
32 f1of1 6093 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
3323, 31, 323syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
34 eldifi 3710 . . . . 5 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
351, 2, 3ballotlemelo 30327 . . . . . 6 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (#‘𝐶) = 𝑀))
3635simplbi 476 . . . . 5 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
3723, 34, 363syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
38 f1imacnv 6110 . . . 4 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
3933, 37, 38syl2anc 692 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
4022, 30, 393eqtr3rd 2664 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 = ((𝑆𝐷) “ 𝐷))
4117, 40jca 554 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  cdif 3552  cin 3554  wss 3555  ifcif 4058  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ccnv 5073  cima 5077  1-1wf1 5844  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  infcinf 8291  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  cz 11321  ...cfz 12268  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-hash 13058
This theorem is referenced by:  ballotlemrinv  30373
  Copyright terms: Public domain W3C validator