Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsval Structured version   Visualization version   GIF version

Theorem ballotlemsval 31759
Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsval (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . 6 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶)
21fveq2d 6667 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑑) = (𝐼𝐶))
32breq2d 5069 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑑) ↔ 𝑖 ≤ (𝐼𝐶)))
42oveq1d 7163 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑑) + 1) = ((𝐼𝐶) + 1))
54oveq1d 7163 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑑) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑖))
63, 5ifbieq1d 4488 . . 3 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
76mpteq2dva 5152 . 2 (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
8 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
9 simpl 485 . . . . . . . 8 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑)
109fveq2d 6667 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑐) = (𝐼𝑑))
1110breq2d 5069 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑐) ↔ 𝑖 ≤ (𝐼𝑑)))
1210oveq1d 7163 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑐) + 1) = ((𝐼𝑑) + 1))
1312oveq1d 7163 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑐) + 1) − 𝑖) = (((𝐼𝑑) + 1) − 𝑖))
1411, 13ifbieq1d 4488 . . . . 5 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖))
1514mpteq2dva 5152 . . . 4 (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
1615cbvmptv 5160 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
178, 16eqtri 2842 . 2 𝑆 = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
18 ovex 7181 . . 3 (1...(𝑀 + 𝑁)) ∈ V
1918mptex 6978 . 2 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) ∈ V
207, 17, 19fvmpt 6761 1 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  {crab 3140  cdif 3931  cin 3933  ifcif 4465  𝒫 cpw 4537   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  infcinf 8897  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  cz 11973  ...cfz 12884  chash 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151
This theorem is referenced by:  ballotlemsv  31760  ballotlemsf1o  31764  ballotlemieq  31767
  Copyright terms: Public domain W3C validator