MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basdif0 Structured version   Visualization version   GIF version

Theorem basdif0 21555
Description: A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
basdif0 ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases)

Proof of Theorem basdif0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4148 . . . 4 𝐵 ⊆ (𝐵 ∪ {∅})
2 undif1 4424 . . . 4 ((𝐵 ∖ {∅}) ∪ {∅}) = (𝐵 ∪ {∅})
31, 2sseqtrri 4004 . . 3 𝐵 ⊆ ((𝐵 ∖ {∅}) ∪ {∅})
4 snex 5324 . . . 4 {∅} ∈ V
5 unexg 7466 . . . 4 (((𝐵 ∖ {∅}) ∈ TopBases ∧ {∅} ∈ V) → ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V)
64, 5mpan2 689 . . 3 ((𝐵 ∖ {∅}) ∈ TopBases → ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V)
7 ssexg 5220 . . 3 ((𝐵 ⊆ ((𝐵 ∖ {∅}) ∪ {∅}) ∧ ((𝐵 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐵 ∈ V)
83, 6, 7sylancr 589 . 2 ((𝐵 ∖ {∅}) ∈ TopBases → 𝐵 ∈ V)
9 elex 3513 . 2 (𝐵 ∈ TopBases → 𝐵 ∈ V)
10 indif1 4248 . . . . . . . . . . 11 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅})
1110unieqi 4841 . . . . . . . . . 10 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅})
12 unidif0 5253 . . . . . . . . . 10 ((𝐵 ∩ 𝒫 (𝑥𝑦)) ∖ {∅}) = (𝐵 ∩ 𝒫 (𝑥𝑦))
1311, 12eqtri 2844 . . . . . . . . 9 ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦))
1413sseq2i 3996 . . . . . . . 8 ((𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
1514ralbii 3165 . . . . . . 7 (∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
16 inss2 4206 . . . . . . . . . 10 (𝑥𝑦) ⊆ 𝑦
17 elinel2 4173 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 ∈ {∅})
18 elsni 4578 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1917, 18syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 = ∅)
20 0ss 4350 . . . . . . . . . . 11 ∅ ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
2119, 20eqsstrdi 4021 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ {∅}) → 𝑦 (𝐵 ∩ 𝒫 (𝑥𝑦)))
2216, 21sstrid 3978 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ {∅}) → (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2322rgen 3148 . . . . . . . 8 𝑦 ∈ (𝐵 ∩ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
24 ralunb 4167 . . . . . . . 8 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (∀𝑦 ∈ (𝐵 ∩ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ∧ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
2523, 24mpbiran 707 . . . . . . 7 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
26 inundif 4427 . . . . . . . 8 ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅})) = 𝐵
2726raleqi 3414 . . . . . . 7 (∀𝑦 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))(𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2815, 25, 273bitr2i 301 . . . . . 6 (∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
2928ralbii 3165 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
30 inss1 4205 . . . . . . . . 9 (𝑥𝑦) ⊆ 𝑥
31 elinel2 4173 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 ∈ {∅})
32 elsni 4578 . . . . . . . . . . 11 (𝑥 ∈ {∅} → 𝑥 = ∅)
3331, 32syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 = ∅)
3433, 20eqsstrdi 4021 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ {∅}) → 𝑥 (𝐵 ∩ 𝒫 (𝑥𝑦)))
3530, 34sstrid 3978 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ {∅}) → (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
3635ralrimivw 3183 . . . . . . 7 (𝑥 ∈ (𝐵 ∩ {∅}) → ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
3736rgen 3148 . . . . . 6 𝑥 ∈ (𝐵 ∩ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))
38 ralunb 4167 . . . . . 6 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (∀𝑥 ∈ (𝐵 ∩ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ∧ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
3937, 38mpbiran 707 . . . . 5 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4026raleqi 3414 . . . . 5 (∀𝑥 ∈ ((𝐵 ∩ {∅}) ∪ (𝐵 ∖ {∅}))∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4129, 39, 403bitr2i 301 . . . 4 (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)))
4241a1i 11 . . 3 (𝐵 ∈ V → (∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
43 difexg 5224 . . . 4 (𝐵 ∈ V → (𝐵 ∖ {∅}) ∈ V)
44 isbasisg 21549 . . . 4 ((𝐵 ∖ {∅}) ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦))))
4543, 44syl 17 . . 3 (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ ∀𝑥 ∈ (𝐵 ∖ {∅})∀𝑦 ∈ (𝐵 ∖ {∅})(𝑥𝑦) ⊆ ((𝐵 ∖ {∅}) ∩ 𝒫 (𝑥𝑦))))
46 isbasisg 21549 . . 3 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
4742, 45, 463bitr4d 313 . 2 (𝐵 ∈ V → ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases))
488, 9, 47pm5.21nii 382 1 ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561   cuni 4832  TopBasesctb 21547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-sn 4562  df-pr 4564  df-uni 4833  df-bases 21548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator