MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basendxnn Structured version   Visualization version   GIF version

Theorem basendxnn 15840
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
Assertion
Ref Expression
basendxnn (Base‘ndx) ∈ ℕ

Proof of Theorem basendxnn
StepHypRef Expression
1 df-base 15781 . . 3 Base = Slot 1
2 1nn 10976 . . 3 1 ∈ ℕ
31, 2ndxarg 15799 . 2 (Base‘ndx) = 1
43, 2eqeltri 2700 1 (Base‘ndx) ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 1992  cfv 5850  1c1 9882  cn 10965  ndxcnx 15773  Basecbs 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-i2m1 9949  ax-1ne0 9950  ax-rrecex 9953  ax-cnre 9954
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-nn 10966  df-ndx 15779  df-slot 15780  df-base 15781
This theorem is referenced by:  slotsbaseefdif  25768  structvtxvallem  25804
  Copyright terms: Public domain W3C validator