MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basis2 Structured version   Visualization version   GIF version

Theorem basis2 20661
Description: Property of a basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
basis2 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem basis2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasis2g 20658 . . . . 5 (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔ ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧))))
21ibi 256 . . . 4 (𝐵 ∈ TopBases → ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)))
3 ineq1 3790 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑧) = (𝐶𝑧))
4 sseq2 3611 . . . . . . . . . 10 ((𝑦𝑧) = (𝐶𝑧) → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐶𝑧)))
54anbi2d 739 . . . . . . . . 9 ((𝑦𝑧) = (𝐶𝑧) → ((𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
65rexbidv 3050 . . . . . . . 8 ((𝑦𝑧) = (𝐶𝑧) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
76raleqbi1dv 3140 . . . . . . 7 ((𝑦𝑧) = (𝐶𝑧) → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
83, 7syl 17 . . . . . 6 (𝑦 = 𝐶 → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
9 ineq2 3791 . . . . . . 7 (𝑧 = 𝐷 → (𝐶𝑧) = (𝐶𝐷))
10 sseq2 3611 . . . . . . . . . 10 ((𝐶𝑧) = (𝐶𝐷) → (𝑥 ⊆ (𝐶𝑧) ↔ 𝑥 ⊆ (𝐶𝐷)))
1110anbi2d 739 . . . . . . . . 9 ((𝐶𝑧) = (𝐶𝐷) → ((𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1211rexbidv 3050 . . . . . . . 8 ((𝐶𝑧) = (𝐶𝐷) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1312raleqbi1dv 3140 . . . . . . 7 ((𝐶𝑧) = (𝐶𝐷) → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
149, 13syl 17 . . . . . 6 (𝑧 = 𝐷 → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
158, 14rspc2v 3311 . . . . 5 ((𝐶𝐵𝐷𝐵) → (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
16 eleq1 2692 . . . . . . . 8 (𝑤 = 𝐴 → (𝑤𝑥𝐴𝑥))
1716anbi1d 740 . . . . . . 7 (𝑤 = 𝐴 → ((𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1817rexbidv 3050 . . . . . 6 (𝑤 = 𝐴 → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1918rspccv 3297 . . . . 5 (∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
2015, 19syl6com 37 . . . 4 (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
212, 20syl 17 . . 3 (𝐵 ∈ TopBases → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
2221expd 452 . 2 (𝐵 ∈ TopBases → (𝐶𝐵 → (𝐷𝐵 → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))))
2322imp43 620 1 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  cin 3559  wss 3560  TopBasesctb 20615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-v 3193  df-in 3567  df-ss 3574  df-pw 4137  df-uni 4408  df-bases 20617
This theorem is referenced by:  tgcl  20679  restbas  20867  txbas  21275  basqtop  21419  tgioo  22502
  Copyright terms: Public domain W3C validator