MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basprssdmsets Structured version   Visualization version   GIF version

Theorem basprssdmsets 16552
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s (𝜑𝑆 Struct 𝑋)
basprssdmsets.i (𝜑𝐼𝑈)
basprssdmsets.w (𝜑𝐸𝑊)
basprssdmsets.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
basprssdmsets (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem basprssdmsets
StepHypRef Expression
1 basprssdmsets.b . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
21orcd 869 . . . 4 (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
3 elun 4128 . . . 4 ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
42, 3sylibr 236 . . 3 (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}))
5 basprssdmsets.i . . . . . 6 (𝜑𝐼𝑈)
6 snidg 4602 . . . . . 6 (𝐼𝑈𝐼 ∈ {𝐼})
75, 6syl 17 . . . . 5 (𝜑𝐼 ∈ {𝐼})
87olcd 870 . . . 4 (𝜑 → (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
9 elun 4128 . . . 4 (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
108, 9sylibr 236 . . 3 (𝜑𝐼 ∈ (dom 𝑆 ∪ {𝐼}))
114, 10prssd 4758 . 2 (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼}))
12 basprssdmsets.s . . . 4 (𝜑𝑆 Struct 𝑋)
13 structex 16497 . . . 4 (𝑆 Struct 𝑋𝑆 ∈ V)
1412, 13syl 17 . . 3 (𝜑𝑆 ∈ V)
15 basprssdmsets.w . . 3 (𝜑𝐸𝑊)
16 setsdm 16520 . . 3 ((𝑆 ∈ V ∧ 𝐸𝑊) → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1714, 15, 16syl2anc 586 . 2 (𝜑 → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1811, 17sseqtrrd 4011 1 (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  wss 3939  {csn 4570  {cpr 4572  cop 4576   class class class wbr 5069  dom cdm 5558  cfv 6358  (class class class)co 7159   Struct cstr 16482  ndxcnx 16483   sSet csts 16484  Basecbs 16486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-res 5570  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-struct 16488  df-sets 16493
This theorem is referenced by:  setsvtx  26823  setsiedg  26824
  Copyright terms: Public domain W3C validator