Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccbc Structured version   Visualization version   GIF version

Theorem bccbc 38023
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccbc.c (𝜑𝑁 ∈ ℕ0)
bccbc.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccbc (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))

Proof of Theorem bccbc
StepHypRef Expression
1 bccbc.c . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0cnd 11297 . . . . 5 (𝜑𝑁 ∈ ℂ)
3 bccbc.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
42, 3bccval 38016 . . . 4 (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
54adantr 481 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
6 bcfallfac 14700 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
76adantl 482 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
85, 7eqtr4d 2658 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
9 nn0split 12395 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
101, 9syl 17 . . . . . . . 8 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
113, 10eleqtrd 2700 . . . . . . 7 (𝜑𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
12 elun 3731 . . . . . . 7 (𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1311, 12sylib 208 . . . . . 6 (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1413orcanai 951 . . . . 5 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘(𝑁 + 1)))
15 eluzle 11644 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾)
1615adantl 482 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾)
171nn0zd 11424 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
183nn0zd 11424 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
19 zltp1le 11371 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2017, 18, 19syl2anc 692 . . . . . . 7 (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2120adantr 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2216, 21mpbird 247 . . . . 5 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < 𝐾)
2314, 22syldan 487 . . . 4 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾)
241nn0ge0d 11298 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
25 0zd 11333 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
26 elfzo 12413 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2717, 25, 18, 26syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2827biimpar 502 . . . . . . 7 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾))
29 fzoval 12412 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1)))
3018, 29syl 17 . . . . . . . . . 10 (𝜑 → (0..^𝐾) = (0...(𝐾 − 1)))
3130eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3231biimpa 501 . . . . . . . 8 ((𝜑𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1)))
332, 3bcc0 38018 . . . . . . . . 9 (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3433biimpar 502 . . . . . . . 8 ((𝜑𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0)
3532, 34syldan 487 . . . . . . 7 ((𝜑𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0)
3628, 35syldan 487 . . . . . 6 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3724, 36sylanr1 683 . . . . 5 ((𝜑 ∧ (𝜑𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3837anabss5 856 . . . 4 ((𝜑𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0)
3923, 38syldan 487 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0)
401, 18jca 554 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝐾 ∈ ℤ))
41 bcval3 13033 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
42413expa 1262 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4340, 42sylan 488 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4439, 43eqtr4d 2658 . 2 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
458, 44pm2.61dan 831 1 (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  cun 3553   class class class wbr 4613  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  ..^cfzo 12406  !cfa 13000  Ccbc 13029   FallFac cfallfac 14660  C𝑐cbcc 38014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561  df-fallfac 14663  df-bcc 38015
This theorem is referenced by:  binomcxplemnn0  38027
  Copyright terms: Public domain W3C validator