MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2 Structured version   Visualization version   GIF version

Theorem bcn2 13678
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
StepHypRef Expression
1 2nn 11709 . . 3 2 ∈ ℕ
2 bcval5 13677 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
31, 2mpan2 689 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
4 2m1e1 11762 . . . . . . . 8 (2 − 1) = 1
54oveq2i 7166 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 11906 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 11711 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 10594 . . . . . . . . 9 1 ∈ ℂ
9 npncan 10906 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1449 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11syl5eqr 2870 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
1312seqeq1d 13374 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I ) = seq(𝑁 − 1)( · , I ))
1413fveq1d 6671 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (seq(𝑁 − 1)( · , I )‘𝑁))
15 nn0z 12004 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
16 peano2zm 12024 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
18 uzid 12257 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
1915, 18syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
20 npcan 10894 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
216, 8, 20sylancl 588 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2221fveq2d 6673 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2319, 22eleqtrrd 2916 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
24 seqm1 13386 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
2517, 23, 24syl2anc 586 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
26 seq1 13381 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
2717, 26syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
28 fvi 6739 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
2917, 28syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3027, 29eqtrd 2856 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = (𝑁 − 1))
31 fvi 6739 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
3230, 31oveq12d 7173 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
3325, 32eqtrd 2856 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((𝑁 − 1) · 𝑁))
34 subcl 10884 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
356, 8, 34sylancl 588 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
3635, 6mulcomd 10661 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
3733, 36eqtrd 2856 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
3814, 37eqtrd 2856 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
39 fac2 13638 . . . 4 (!‘2) = 2
4039a1i 11 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
4138, 40oveq12d 7173 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
423, 41eqtrd 2856 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110   I cid 5458  cfv 6354  (class class class)co 7155  cc 10534  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  seqcseq 13368  !cfa 13632  Ccbc 13661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-fac 13633  df-bc 13662
This theorem is referenced by:  bcp1m1  13679  bpoly3  15411
  Copyright terms: Public domain W3C validator