MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2m1 Structured version   Visualization version   GIF version

Theorem bcn2m1 13687
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
bcn2m1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))

Proof of Theorem bcn2m1
StepHypRef Expression
1 nnm1nn0 11941 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
21nn0cnd 11960 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
3 2z 12017 . . . . 5 2 ∈ ℤ
4 bccl 13685 . . . . 5 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0)
51, 3, 4sylancl 588 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0)
65nn0cnd 11960 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ)
72, 6addcomd 10845 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1)))
8 bcn1 13676 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1))
98eqcomd 2830 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1))
101, 9syl 17 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1))
11 1e2m1 11767 . . . . . 6 1 = (2 − 1)
1211a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 = (2 − 1))
1312oveq2d 7175 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1)))
1410, 13eqtrd 2859 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1)))
1514oveq2d 7175 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))))
16 bcpasc 13684 . . . 4 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
171, 3, 16sylancl 588 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
18 nncn 11649 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 1cnd 10639 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2018, 19npcand 11004 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
2120oveq1d 7174 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2))
2217, 21eqtrd 2859 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2))
237, 15, 223eqtrd 2863 1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  (class class class)co 7159  1c1 10541   + caddc 10543  cmin 10873  cn 11641  2c2 11695  0cn0 11900  cz 11984  Ccbc 13665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-fac 13637  df-bc 13666
This theorem is referenced by:  cusgrsize2inds  27238
  Copyright terms: Public domain W3C validator