MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1m1 Structured version   Visualization version   GIF version

Theorem bcp1m1 13055
Description: Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcp1m1 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))

Proof of Theorem bcp1m1
StepHypRef Expression
1 peano2nn0 11285 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 nn0z 11352 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 11372 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 bccmpl 13044 . . 3 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))))
61, 4, 5syl2anc 692 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))))
7 nn0cn 11254 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 1cnd 10008 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
97, 8, 8pnncand 10383 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = (1 + 1))
10 df-2 11031 . . . . 5 2 = (1 + 1)
119, 10syl6eqr 2673 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = 2)
1211oveq2d 6626 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = ((𝑁 + 1)C2))
13 bcn2 13054 . . . . 5 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2))
141, 13syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2))
15 ax-1cn 9946 . . . . . . 7 1 ∈ ℂ
16 pncan 10239 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
177, 15, 16sylancl 693 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1817oveq2d 6626 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) · ((𝑁 + 1) − 1)) = ((𝑁 + 1) · 𝑁))
1918oveq1d 6625 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2) = (((𝑁 + 1) · 𝑁) / 2))
2014, 19eqtrd 2655 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · 𝑁) / 2))
2112, 20eqtrd 2655 . 2 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = (((𝑁 + 1) · 𝑁) / 2))
226, 21eqtrd 2655 1 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  (class class class)co 6610  cc 9886  1c1 9889   + caddc 9891   · cmul 9893  cmin 10218   / cdiv 10636  2c2 11022  0cn0 11244  cz 11329  Ccbc 13037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-seq 12750  df-fac 13009  df-bc 13038
This theorem is referenced by:  arisum  14528
  Copyright terms: Public domain W3C validator