Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcprod Structured version   Visualization version   GIF version

Theorem bcprod 31353
Description: A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
Assertion
Ref Expression
bcprod (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Distinct variable group:   𝑘,𝑁

Proof of Theorem bcprod
Dummy variables 𝑛 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6614 . . . . . . 7 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
2 1m1e0 11036 . . . . . . 7 (1 − 1) = 0
31, 2syl6eq 2671 . . . . . 6 (𝑚 = 1 → (𝑚 − 1) = 0)
43oveq2d 6623 . . . . 5 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
5 fz10 12307 . . . . 5 (1...0) = ∅
64, 5syl6eq 2671 . . . 4 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
73oveq1d 6622 . . . . 5 (𝑚 = 1 → ((𝑚 − 1)C𝑘) = (0C𝑘))
87adantr 481 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (0C𝑘))
96, 8prodeq12dv 14584 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ ∅ (0C𝑘))
10 oveq2 6615 . . . . . 6 (𝑚 = 1 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 1))
1110oveq2d 6623 . . . . 5 (𝑚 = 1 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
1211adantr 481 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
136, 12prodeq12dv 14584 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)))
149, 13eqeq12d 2636 . 2 (𝑚 = 1 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))))
15 oveq1 6614 . . . . 5 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1615oveq2d 6623 . . . 4 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
1715oveq1d 6622 . . . . 5 (𝑚 = 𝑛 → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1817adantr 481 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1916, 18prodeq12dv 14584 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘))
20 oveq2 6615 . . . . . 6 (𝑚 = 𝑛 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑛))
2120oveq2d 6623 . . . . 5 (𝑚 = 𝑛 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2221adantr 481 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2316, 22prodeq12dv 14584 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
2419, 23eqeq12d 2636 . 2 (𝑚 = 𝑛 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))))
25 oveq1 6614 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 6623 . . . 4 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
2725oveq1d 6622 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2827adantr 481 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2926, 28prodeq12dv 14584 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘))
30 oveq2 6615 . . . . . 6 (𝑚 = (𝑛 + 1) → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − (𝑛 + 1)))
3130oveq2d 6623 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3231adantr 481 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3326, 32prodeq12dv 14584 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3429, 33eqeq12d 2636 . 2 (𝑚 = (𝑛 + 1) → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
35 oveq1 6614 . . . . 5 (𝑚 = 𝑁 → (𝑚 − 1) = (𝑁 − 1))
3635oveq2d 6623 . . . 4 (𝑚 = 𝑁 → (1...(𝑚 − 1)) = (1...(𝑁 − 1)))
3735oveq1d 6622 . . . . 5 (𝑚 = 𝑁 → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3837adantr 481 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3936, 38prodeq12dv 14584 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘))
40 oveq2 6615 . . . . . 6 (𝑚 = 𝑁 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑁))
4140oveq2d 6623 . . . . 5 (𝑚 = 𝑁 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4241adantr 481 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4336, 42prodeq12dv 14584 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
4439, 43eqeq12d 2636 . 2 (𝑚 = 𝑁 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))))
45 prod0 14601 . . 3 𝑘 ∈ ∅ (0C𝑘) = 1
46 prod0 14601 . . 3 𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)) = 1
4745, 46eqtr4i 2646 . 2 𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))
48 simpr 477 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
4948oveq1d 6622 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
50 nncn 10975 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
51 1cnd 10003 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℂ)
5250, 51pncand 10340 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
5352oveq2d 6623 . . . . . . 7 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
5452oveq1d 6622 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5554adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...((𝑛 + 1) − 1))) → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5653, 55prodeq12dv 14584 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘))
57 elnnuz 11671 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
5857biimpi 206 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
59 nnnn0 11246 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
60 elfzelz 12287 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
61 bccl 13052 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
6259, 60, 61syl2an 494 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℕ0)
6362nn0cnd 11300 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℂ)
64 oveq2 6615 . . . . . . 7 (𝑘 = 𝑛 → (𝑛C𝑘) = (𝑛C𝑛))
6558, 63, 64fprodm1 14625 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)))
66 bcnn 13042 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛C𝑛) = 1)
6759, 66syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛C𝑛) = 1)
6867oveq2d 6623 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1))
69 fzfid 12715 . . . . . . . . 9 (𝑛 ∈ ℕ → (1...(𝑛 − 1)) ∈ Fin)
70 elfzelz 12287 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℤ)
7159, 70, 61syl2an 494 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℕ0)
7271nn0cnd 11300 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℂ)
7369, 72fprodcl 14610 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) ∈ ℂ)
7473mulid1d 10004 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘))
75 1eluzge0 11679 . . . . . . . . . . . 12 1 ∈ (ℤ‘0)
76 fzss1 12325 . . . . . . . . . . . 12 (1 ∈ (ℤ‘0) → (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1)))
7775, 76ax-mp 5 . . . . . . . . . . 11 (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1))
7877sseli 3580 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ (0...(𝑛 − 1)))
79 bcm1nt 31352 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
8078, 79sylan2 491 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
8180prodeq2dv 14581 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
82 nnm1nn0 11281 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
83 bccl 13052 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8482, 70, 83syl2an 494 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8584nn0cnd 11300 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℂ)
8650adantr 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℂ)
87 elfznn 12315 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℕ)
8887adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℕ)
8988nnred 10982 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℝ)
9082adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℕ0)
9190nn0red 11299 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℝ)
92 nnre 10974 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9392adantr 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℝ)
94 elfzle2 12290 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ≤ (𝑛 − 1))
9594adantl 482 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≤ (𝑛 − 1))
9693ltm1d 10903 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) < 𝑛)
9789, 91, 93, 95, 96lelttrd 10142 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 < 𝑛)
98 simpl 473 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℕ)
99 nnsub 11006 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
10088, 98, 99syl2anc 692 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
10197, 100mpbid 222 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℕ)
102101nncnd 10983 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℂ)
103101nnne0d 11012 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ≠ 0)
10486, 102, 103divcld 10748 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 / (𝑛𝑘)) ∈ ℂ)
10569, 85, 104fprodmul 14618 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))))
10669, 86, 102, 103fproddiv 14619 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
107 fzfi 12714 . . . . . . . . . . . . 13 (1...(𝑛 − 1)) ∈ Fin
108 fprodconst 14636 . . . . . . . . . . . . 13 (((1...(𝑛 − 1)) ∈ Fin ∧ 𝑛 ∈ ℂ) → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(#‘(1...(𝑛 − 1)))))
109107, 50, 108sylancr 694 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(#‘(1...(𝑛 − 1)))))
110 hashfz1 13077 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ0 → (#‘(1...(𝑛 − 1))) = (𝑛 − 1))
11182, 110syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (#‘(1...(𝑛 − 1))) = (𝑛 − 1))
112111oveq2d 6623 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑(#‘(1...(𝑛 − 1)))) = (𝑛↑(𝑛 − 1)))
113109, 112eqtr2d 2656 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑛)
114 fprodfac 14631 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
11582, 114syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
116 nnz 11346 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
117 1zzd 11355 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ∈ ℤ)
11882nn0zd 11427 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
119 elfznn 12315 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑛 − 1)) → 𝑗 ∈ ℕ)
120119adantl 482 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℕ)
121120nncnd 10983 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℂ)
122 id 22 . . . . . . . . . . . . 13 (𝑗 = (𝑛𝑘) → 𝑗 = (𝑛𝑘))
123116, 117, 118, 121, 122fprodrev 14635 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑗 ∈ (1...(𝑛 − 1))𝑗 = ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘))
12450, 51nncand 10344 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 − (𝑛 − 1)) = 1)
125124oveq1d 6622 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 − (𝑛 − 1))...(𝑛 − 1)) = (1...(𝑛 − 1)))
126125prodeq1d 14579 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
127115, 123, 1263eqtrd 2659 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
128113, 127oveq12d 6625 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
129106, 128eqtr4d 2658 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))))
130129oveq2d 6623 . . . . . . . 8 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13181, 105, 1303eqtrd 2659 . . . . . . 7 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13268, 74, 1313eqtrd 2659 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13356, 65, 1323eqtrd 2659 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
134133adantr 481 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13553prodeq1d 14579 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
136 elfznn 12315 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
137136adantl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
138137nncnd 10983 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
139137nnne0d 11012 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
140 2nn 11132 . . . . . . . . . . . 12 2 ∈ ℕ
141140a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 2 ∈ ℕ)
142141, 137nnmulcld 11015 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℕ)
143142nnzd 11428 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℤ)
144 peano2nn 10979 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
145144adantr 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℕ)
146145nnzd 11428 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℤ)
147143, 146zsubcld 11434 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((2 · 𝑘) − (𝑛 + 1)) ∈ ℤ)
148138, 139, 147expclzd 12956 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) ∈ ℂ)
149 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
150 oveq2 6615 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
151150oveq1d 6622 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) − (𝑛 + 1)) = ((2 · 𝑛) − (𝑛 + 1)))
152149, 151oveq12d 6625 . . . . . . 7 (𝑘 = 𝑛 → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (𝑛↑((2 · 𝑛) − (𝑛 + 1))))
15358, 148, 152fprodm1 14625 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))))
15488nncnd 10983 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℂ)
15588nnne0d 11012 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≠ 0)
156140a1i 11 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 2 ∈ ℕ)
157156, 88nnmulcld 11015 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℕ)
158157nnzd 11428 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℤ)
159116adantr 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℤ)
160158, 159zsubcld 11434 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((2 · 𝑘) − 𝑛) ∈ ℤ)
161154, 155, 160expclzd 12956 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
16269, 161, 154, 155fproddiv 14619 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
163157nncnd 10983 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℂ)
164 1cnd 10003 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 1 ∈ ℂ)
165163, 86, 164subsub4d 10370 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (((2 · 𝑘) − 𝑛) − 1) = ((2 · 𝑘) − (𝑛 + 1)))
166165oveq2d 6623 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
167154, 155, 160expm1d 12961 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
168166, 167eqtr3d 2657 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
169168prodeq2dv 14581 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
170 fprodfac 14631 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
17182, 170syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
172171oveq2d 6623 . . . . . . . . 9 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
173162, 169, 1723eqtr4d 2665 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))))
174140a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℕ)
175 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
176174, 175nnmulcld 11015 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
177176nncnd 10983 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
178177, 50, 51subsub4d 10370 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = ((2 · 𝑛) − (𝑛 + 1)))
179502timesd 11222 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) = (𝑛 + 𝑛))
180179oveq1d 6622 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = ((𝑛 + 𝑛) − 𝑛))
18150, 50pncand 10340 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛 + 𝑛) − 𝑛) = 𝑛)
182180, 181eqtrd 2655 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = 𝑛)
183182oveq1d 6622 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = (𝑛 − 1))
184178, 183eqtr3d 2657 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) − (𝑛 + 1)) = (𝑛 − 1))
185184oveq2d 6623 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑((2 · 𝑛) − (𝑛 + 1))) = (𝑛↑(𝑛 − 1)))
186173, 185oveq12d 6625 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))))
18769, 161fprodcl 14610 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
188 faccl 13013 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) ∈ ℕ)
18982, 188syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℕ)
190189nncnd 10983 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℂ)
19150, 82expcld 12951 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) ∈ ℂ)
192189nnne0d 11012 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ≠ 0)
193187, 190, 191, 192div32d 10771 . . . . . . 7 (𝑛 ∈ ℕ → ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
194186, 193eqtrd 2655 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
195135, 153, 1943eqtrd 2659 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
196195adantr 481 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
19749, 134, 1963eqtr4d 2665 . . 3 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
198197ex 450 . 2 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
19914, 24, 34, 44, 47, 198nnind 10985 1 (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3556  c0 3893   class class class wbr 4615  cfv 5849  (class class class)co 6607  Fincfn 7902  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886   · cmul 9888   < clt 10021  cle 10022  cmin 10213   / cdiv 10631  cn 10967  2c2 11017  0cn0 11239  cz 11324  cuz 11634  ...cfz 12271  cexp 12803  !cfa 13003  Ccbc 13032  #chash 13060  cprod 14563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-prod 14564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator