HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   GIF version

Theorem bcseqi 27817
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 27877. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcseqi (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8 𝐵 ∈ ℋ
21, 1hicli 27778 . . . . . . 7 (𝐵 ·ih 𝐵) ∈ ℂ
3 normlem7t.1 . . . . . . 7 𝐴 ∈ ℋ
42, 3hvmulcli 27711 . . . . . 6 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 27778 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 27711 . . . . . 6 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
74, 6, 4, 6normlem9 27815 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
8 oveq1 6612 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)))
98eqcomd 2632 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)))
10 his5 27783 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)))
112, 4, 3, 10mp3an 1421 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴))
12 hiidrcl 27792 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
13 cjre 13808 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) ∈ ℝ → (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵))
141, 12, 13mp2b 10 . . . . . . . . . . 11 (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵)
15 ax-his3 27781 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
162, 3, 3, 15mp3an 1421 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
1714, 16oveq12i 6617 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
183, 3hicli 27778 . . . . . . . . . . . . 13 (𝐴 ·ih 𝐴) ∈ ℂ
192, 18mulcli 9990 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) ∈ ℂ
202, 19mulcomi 9991 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2118, 2mulcomi 9991 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
2221oveq1i 6615 . . . . . . . . . . 11 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2320, 22eqtr4i 2651 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
2411, 17, 233eqtri 2652 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
25 his5 27783 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)))
265, 4, 1, 25mp3an 1421 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵))
271, 3his1i 27797 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
2827eqcomi 2635 . . . . . . . . . . 11 (∗‘(𝐴 ·ih 𝐵)) = (𝐵 ·ih 𝐴)
29 ax-his3 27781 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
302, 3, 1, 29mp3an 1421 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
3128, 30oveq12i 6617 . . . . . . . . . 10 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
321, 3hicli 27778 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) ∈ ℂ
332, 5mulcli 9990 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) ∈ ℂ
3432, 33mulcomi 9991 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
352, 5, 32mulassi 9994 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
365, 32mulcli 9990 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
372, 36mulcomi 9991 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3834, 35, 373eqtri 2652 . . . . . . . . . 10 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3926, 31, 383eqtri 2652 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
409, 24, 393eqtr4g 2685 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)))
41 ax-his3 27781 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
425, 1, 3, 41mp3an 1421 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
4314, 42oveq12i 6617 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
44 his5 27783 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
452, 6, 3, 44mp3an 1421 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
46 his5 27783 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
475, 6, 1, 46mp3an 1421 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
48 ax-his3 27781 . . . . . . . . . . . . 13 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
495, 1, 1, 48mp3an 1421 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
5028, 49oveq12i 6617 . . . . . . . . . . 11 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
515, 2mulcli 9990 . . . . . . . . . . . . 13 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) ∈ ℂ
5232, 51mulcomi 9991 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
535, 2, 32mul32i 10177 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
5436, 2mulcomi 9991 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5552, 53, 543eqtri 2652 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5647, 50, 553eqtri 2652 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5743, 45, 563eqtr4ri 2659 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))
5857a1i 11 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))
5940, 58oveq12d 6623 . . . . . . 7 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
6059oveq1d 6620 . . . . . 6 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))))
614, 6hicli 27778 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℂ
626, 4hicli 27778 . . . . . . . 8 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) ∈ ℂ
6361, 62addcli 9989 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) ∈ ℂ
6463subidi 10297 . . . . . 6 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0
6560, 64syl6eq 2676 . . . . 5 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0)
667, 65syl5eq 2672 . . . 4 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
674, 6hvsubcli 27718 . . . . 5 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
68 his6 27796 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0))
6967, 68ax-mp 5 . . . 4 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
7066, 69sylib 208 . . 3 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
714, 6hvsubeq0i 27760 . . 3 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0 ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
7270, 71sylib 208 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
73 oveq1 6612 . . . 4 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
7421, 16eqtr4i 2651 . . . 4 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)
7542eqcomi 2635 . . . 4 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)
7673, 74, 753eqtr4g 2685 . . 3 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
7776eqcomd 2632 . 2 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
7872, 77impbii 199 1 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  wcel 1992  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881   + caddc 9884   · cmul 9886  cmin 10211  ccj 13765  chil 27616   · csm 27618   ·ih csp 27619  0c0v 27621   cmv 27622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-hfvadd 27697  ax-hvcom 27698  ax-hvass 27699  ax-hv0cl 27700  ax-hvaddid 27701  ax-hfvmul 27702  ax-hvmulid 27703  ax-hvdistr2 27706  ax-hvmul0 27707  ax-hfi 27776  ax-his1 27779  ax-his2 27780  ax-his3 27781  ax-his4 27782
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-2 11024  df-cj 13768  df-re 13769  df-im 13770  df-hvsub 27668
This theorem is referenced by:  h1de2i  28252
  Copyright terms: Public domain W3C validator