HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Structured version   Visualization version   GIF version

Theorem bcsiALT 28958
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bcs.1 𝐴 ∈ ℋ
bcs.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcsiALT (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 6672 . . 3 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) = (abs‘0))
2 abs0 14647 . . . 4 (abs‘0) = 0
3 bcs.1 . . . . . 6 𝐴 ∈ ℋ
4 normge0 28905 . . . . . 6 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
53, 4ax-mp 5 . . . . 5 0 ≤ (norm𝐴)
6 bcs.2 . . . . . 6 𝐵 ∈ ℋ
7 normge0 28905 . . . . . 6 (𝐵 ∈ ℋ → 0 ≤ (norm𝐵))
86, 7ax-mp 5 . . . . 5 0 ≤ (norm𝐵)
93normcli 28910 . . . . . 6 (norm𝐴) ∈ ℝ
106normcli 28910 . . . . . 6 (norm𝐵) ∈ ℝ
119, 10mulge0i 11189 . . . . 5 ((0 ≤ (norm𝐴) ∧ 0 ≤ (norm𝐵)) → 0 ≤ ((norm𝐴) · (norm𝐵)))
125, 8, 11mp2an 690 . . . 4 0 ≤ ((norm𝐴) · (norm𝐵))
132, 12eqbrtri 5089 . . 3 (abs‘0) ≤ ((norm𝐴) · (norm𝐵))
141, 13eqbrtrdi 5107 . 2 ((𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
15 df-ne 3019 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 ↔ ¬ (𝐴 ·ih 𝐵) = 0)
166, 3his1i 28879 . . . . . . . 8 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
1716oveq2i 7169 . . . . . . 7 (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))
1817oveq2i 7169 . . . . . 6 (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵))))
193, 6hicli 28860 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
20 abslem2 14701 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2119, 20mpan 688 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (∗‘(𝐴 ·ih 𝐵)))) = (2 · (abs‘(𝐴 ·ih 𝐵))))
2218, 21syl5req 2871 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) = (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))))
2319abs00i 14760 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) = 0 ↔ (𝐴 ·ih 𝐵) = 0)
2423necon3bii 3070 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ (𝐴 ·ih 𝐵) ≠ 0)
2519abscli 14757 . . . . . . . . . 10 (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ
2625recni 10657 . . . . . . . . 9 (abs‘(𝐴 ·ih 𝐵)) ∈ ℂ
2719, 26divclzi 11377 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
2819, 26divreczi 11380 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) = ((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
2928fveq2d 6676 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))))
3026recclzi 11367 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ)
31 absmul 14656 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ) → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3219, 30, 31sylancr 589 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))))
3325rerecclzi 11406 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ)
34 0re 10645 . . . . . . . . . . . . . 14 0 ∈ ℝ
3533, 34jctil 522 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ))
3619absgt0i 14761 . . . . . . . . . . . . . . 15 ((𝐴 ·ih 𝐵) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3724, 36bitri 277 . . . . . . . . . . . . . 14 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 ↔ 0 < (abs‘(𝐴 ·ih 𝐵)))
3825recgt0i 11547 . . . . . . . . . . . . . 14 (0 < (abs‘(𝐴 ·ih 𝐵)) → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
3937, 38sylbi 219 . . . . . . . . . . . . 13 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 < (1 / (abs‘(𝐴 ·ih 𝐵))))
40 ltle 10731 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / (abs‘(𝐴 ·ih 𝐵))) ∈ ℝ) → (0 < (1 / (abs‘(𝐴 ·ih 𝐵))) → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵)))))
4135, 39, 40sylc 65 . . . . . . . . . . . 12 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → 0 ≤ (1 / (abs‘(𝐴 ·ih 𝐵))))
4233, 41absidd 14784 . . . . . . . . . . 11 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘(1 / (abs‘(𝐴 ·ih 𝐵)))) = (1 / (abs‘(𝐴 ·ih 𝐵))))
4342oveq2d 7174 . . . . . . . . . 10 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (abs‘(1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4432, 43eqtrd 2858 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) · (1 / (abs‘(𝐴 ·ih 𝐵))))) = ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))))
4526recidzi 11369 . . . . . . . . 9 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → ((abs‘(𝐴 ·ih 𝐵)) · (1 / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4629, 44, 453eqtrd 2862 . . . . . . . 8 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1)
4727, 46jca 514 . . . . . . 7 ((abs‘(𝐴 ·ih 𝐵)) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
4824, 47sylbir 237 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1))
493, 6normlem7tALT 28898 . . . . . 6 ((((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) ∈ ℂ ∧ (abs‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) = 1) → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5048, 49syl 17 . . . . 5 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵)))) · (𝐴 ·ih 𝐵)) + (((𝐴 ·ih 𝐵) / (abs‘(𝐴 ·ih 𝐵))) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5122, 50eqbrtrd 5090 . . . 4 ((𝐴 ·ih 𝐵) ≠ 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5215, 51sylbir 237 . . 3 (¬ (𝐴 ·ih 𝐵) = 0 → (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
5310recni 10657 . . . . . 6 (norm𝐵) ∈ ℂ
549recni 10657 . . . . . 6 (norm𝐴) ∈ ℂ
55 normval 28903 . . . . . . . 8 (𝐵 ∈ ℋ → (norm𝐵) = (√‘(𝐵 ·ih 𝐵)))
566, 55ax-mp 5 . . . . . . 7 (norm𝐵) = (√‘(𝐵 ·ih 𝐵))
57 normval 28903 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
583, 57ax-mp 5 . . . . . . 7 (norm𝐴) = (√‘(𝐴 ·ih 𝐴))
5956, 58oveq12i 7170 . . . . . 6 ((norm𝐵) · (norm𝐴)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6053, 54, 59mulcomli 10652 . . . . 5 ((norm𝐴) · (norm𝐵)) = ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))
6160breq2i 5076 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
62 2pos 11743 . . . . 5 0 < 2
63 hiidge0 28877 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ (𝐵 ·ih 𝐵))
64 hiidrcl 28874 . . . . . . . . . 10 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
656, 64ax-mp 5 . . . . . . . . 9 (𝐵 ·ih 𝐵) ∈ ℝ
6665sqrtcli 14733 . . . . . . . 8 (0 ≤ (𝐵 ·ih 𝐵) → (√‘(𝐵 ·ih 𝐵)) ∈ ℝ)
676, 63, 66mp2b 10 . . . . . . 7 (√‘(𝐵 ·ih 𝐵)) ∈ ℝ
68 hiidge0 28877 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
69 hiidrcl 28874 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
703, 69ax-mp 5 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℝ
7170sqrtcli 14733 . . . . . . . 8 (0 ≤ (𝐴 ·ih 𝐴) → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
723, 68, 71mp2b 10 . . . . . . 7 (√‘(𝐴 ·ih 𝐴)) ∈ ℝ
7367, 72remulcli 10659 . . . . . 6 ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ∈ ℝ
74 2re 11714 . . . . . 6 2 ∈ ℝ
7525, 73, 74lemul2i 11565 . . . . 5 (0 < 2 → ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
7662, 75ax-mp 5 . . . 4 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7761, 76bitri 277 . . 3 ((abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)) ↔ (2 · (abs‘(𝐴 ·ih 𝐵))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
7852, 77sylibr 236 . 2 (¬ (𝐴 ·ih 𝐵) = 0 → (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵)))
7914, 78pm2.61i 184 1 (abs‘(𝐴 ·ih 𝐵)) ≤ ((norm𝐴) · (norm𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  2c2 11695  ccj 14457  csqrt 14594  abscabs 14595  chba 28698   ·ih csp 28701  normcno 28702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-hfvadd 28779  ax-hv0cl 28782  ax-hfvmul 28784  ax-hvmulass 28786  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-hnorm 28747  df-hvsub 28750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator