MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem3 Structured version   Visualization version   GIF version

Theorem bcthlem3 23931
Description: Lemma for bcth 23934. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧,𝐴   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 bcthlem.11 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 fvoveq1 7181 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1)))
3 id 22 . . . . . . . . . 10 (𝑘 = 𝐴𝑘 = 𝐴)
4 fveq2 6672 . . . . . . . . . 10 (𝑘 = 𝐴 → (𝑔𝑘) = (𝑔𝐴))
53, 4oveq12d 7176 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑘𝐹(𝑔𝑘)) = (𝐴𝐹(𝑔𝐴)))
62, 5eleq12d 2909 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴))))
76rspccva 3624 . . . . . . 7 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
81, 7sylan 582 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
9 bcthlem.9 . . . . . . . 8 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
109ffvelrnda 6853 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → (𝑔𝐴) ∈ (𝑋 × ℝ+))
11 bcth.2 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
12 bcthlem.4 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
13 bcthlem.5 . . . . . . . . 9 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1411, 12, 13bcthlem1 23929 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
1514expr 459 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → ((𝑔𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))))
1610, 15mpd 15 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
178, 16mpbid 234 . . . . 5 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))
1817simp3d 1140 . . . 4 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))
1918difss2d 4113 . . 3 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
20193adant2 1127 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
21 peano2nn 11652 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
22 cmetmet 23891 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
23 metxmet 22946 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2412, 22, 233syl 18 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
25 bcthlem.6 . . . . 5 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
26 bcthlem.7 . . . . 5 (𝜑𝑅 ∈ ℝ+)
27 bcthlem.8 . . . . 5 (𝜑𝐶𝑋)
28 bcthlem.10 . . . . 5 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
2911, 12, 13, 25, 26, 27, 9, 28, 1bcthlem2 23930 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
3024, 9, 29, 11caublcls 23914 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3121, 30syl3an3 1161 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3220, 31sseldd 3970 1 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cdif 3935  wss 3938  cop 4575   class class class wbr 5068  {copab 5130   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  1c1 10540   + caddc 10542   < clt 10677   / cdiv 11299  cn 11640  +crp 12392  ∞Metcxmet 20532  Metcmet 20533  ballcbl 20534  MetOpencmopn 20537  Clsdccld 21626  clsccl 21628  𝑡clm 21836  CMetccmet 23859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-lm 21839  df-cmet 23862
This theorem is referenced by:  bcthlem4  23932
  Copyright terms: Public domain W3C validator