MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval Structured version   Visualization version   GIF version

Theorem bcval 13663
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 13664 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7163 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21eleq2d 2898 . . 3 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
3 fveq2 6669 . . . 4 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
4 fvoveq1 7178 . . . . 5 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
54oveq1d 7170 . . . 4 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
63, 5oveq12d 7173 . . 3 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
72, 6ifbieq1d 4489 . 2 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
8 eleq1 2900 . . 3 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
9 oveq2 7163 . . . . . 6 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
109fveq2d 6673 . . . . 5 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
11 fveq2 6669 . . . . 5 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
1210, 11oveq12d 7173 . . . 4 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
1312oveq2d 7171 . . 3 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
148, 13ifbieq1d 4489 . 2 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
15 df-bc 13662 . 2 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
16 ovex 7188 . . 3 ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ V
17 c0ex 10634 . . 3 0 ∈ V
1816, 17ifex 4514 . 2 if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ V
197, 14, 15, 18ovmpo 7309 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  ifcif 4466  cfv 6354  (class class class)co 7155  0cc0 10536   · cmul 10541  cmin 10869   / cdiv 11296  0cn0 11896  cz 11980  ...cfz 12891  !cfa 13632  Ccbc 13661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-mulcl 10598  ax-i2m1 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-bc 13662
This theorem is referenced by:  bcval2  13664  bcval3  13665  bcneg1  32968  bccolsum  32971  fwddifnp1  33626
  Copyright terms: Public domain W3C validator