MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval5 Structured version   Visualization version   GIF version

Theorem bcval5 13045
Description: Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcval5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))

Proof of Theorem bcval5
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 13032 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 482 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 mulcl 9964 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
43adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
5 mulass 9968 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
65adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
7 simplr 791 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
8 elfzuz3 12281 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
98adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐾))
10 eluznn 11702 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ)
117, 9, 10syl2anc 692 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ)
1211adantrr 752 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℕ)
13 simplr 791 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℕ)
14 nnre 10971 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
15 nnrp 11786 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
16 ltsubrp 11810 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ+) → (𝑁𝐾) < 𝑁)
1714, 15, 16syl2an 494 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾) < 𝑁)
1812, 13, 17syl2anc 692 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) < 𝑁)
1912nnzd 11425 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℤ)
20 nnz 11343 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2120ad2antlr 762 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℤ)
2219, 21zsubcld 11431 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℤ)
23 zltp1le 11371 . . . . . . . . . . 11 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2422, 19, 23syl2anc 692 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2518, 24mpbid 222 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ≤ 𝑁)
2622peano2zd 11429 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ∈ ℤ)
27 eluz 11645 . . . . . . . . . 10 ((((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2826, 19, 27syl2anc 692 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2925, 28mpbird 247 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
30 simprr 795 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
31 nnuz 11667 . . . . . . . . 9 ℕ = (ℤ‘1)
3230, 31syl6eleq 2708 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ (ℤ‘1))
33 fvi 6212 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) = 𝑘)
34 elfzelz 12284 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
3534zcnd 11427 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
3633, 35eqeltrd 2698 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) ∈ ℂ)
3736adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℂ)
384, 6, 29, 32, 37seqsplit 12774 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (seq1( · , I )‘𝑁) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
39 facnn 13002 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
4012, 39syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
41 facnn 13002 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4230, 41syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4342oveq1d 6619 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4438, 40, 433eqtr4d 2665 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4544expr 642 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
46 simpll 789 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
47 faccl 13010 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
48 nncn 10972 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ)
4946, 47, 483syl 18 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
5049mulid2d 10002 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (!‘𝑁))
5111, 39syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
5251oveq2d 6620 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
5350, 52eqtr3d 2657 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (1 · (seq1( · , I )‘𝑁)))
54 fveq2 6148 . . . . . . . . 9 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = (!‘0))
55 fac0 13003 . . . . . . . . 9 (!‘0) = 1
5654, 55syl6eq 2671 . . . . . . . 8 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = 1)
57 oveq1 6611 . . . . . . . . . . 11 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = (0 + 1))
58 0p1e1 11076 . . . . . . . . . . 11 (0 + 1) = 1
5957, 58syl6eq 2671 . . . . . . . . . 10 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = 1)
6059seqeq1d 12747 . . . . . . . . 9 ((𝑁𝐾) = 0 → seq((𝑁𝐾) + 1)( · , I ) = seq1( · , I ))
6160fveq1d 6150 . . . . . . . 8 ((𝑁𝐾) = 0 → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = (seq1( · , I )‘𝑁))
6256, 61oveq12d 6622 . . . . . . 7 ((𝑁𝐾) = 0 → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
6362eqeq2d 2631 . . . . . 6 ((𝑁𝐾) = 0 → ((!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) ↔ (!‘𝑁) = (1 · (seq1( · , I )‘𝑁))))
6453, 63syl5ibrcom 237 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) = 0 → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
65 fznn0sub 12315 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
6665adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
67 elnn0 11238 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6866, 67sylib 208 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6945, 64, 68mpjaod 396 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
7069oveq1d 6619 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
71 eqid 2621 . . . . . 6 (ℤ‘((𝑁𝐾) + 1)) = (ℤ‘((𝑁𝐾) + 1))
72 nn0z 11344 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
73 zsubcl 11363 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
7472, 20, 73syl2an 494 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
7574peano2zd 11429 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → ((𝑁𝐾) + 1) ∈ ℤ)
7675adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
77 fvi 6212 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) = 𝑘)
78 eluzelcn 11643 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑘 ∈ ℂ)
7977, 78eqeltrd 2698 . . . . . . 7 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) ∈ ℂ)
8079adantl 482 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑘) ∈ ℂ)
813adantl 482 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
8271, 76, 80, 81seqf 12762 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → seq((𝑁𝐾) + 1)( · , I ):(ℤ‘((𝑁𝐾) + 1))⟶ℂ)
8311, 7, 17syl2anc 692 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 𝑁)
8474adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
8511nnzd 11425 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
8684, 85, 23syl2anc 692 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8783, 86mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 𝑁)
8876, 85, 27syl2anc 692 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8987, 88mpbird 247 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
9082, 89ffvelrnd 6316 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) ∈ ℂ)
91 elfznn0 12374 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
9291adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
93 faccl 13010 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
9492, 93syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
9594nncnd 10980 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
96 faccl 13010 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 → (!‘(𝑁𝐾)) ∈ ℕ)
9766, 96syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9897nncnd 10980 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
9994nnne0d 11009 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
10097nnne0d 11009 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
10190, 95, 98, 99, 100divcan5d 10771 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
1022, 70, 1013eqtrd 2659 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
103 nnnn0 11243 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
104103ad2antlr 762 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
105 nncn 10972 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ∈ ℂ)
106 nnne0 10997 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ≠ 0)
107105, 106div0d 10744 . . . 4 ((!‘𝐾) ∈ ℕ → (0 / (!‘𝐾)) = 0)
108104, 93, 1073syl 18 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 / (!‘𝐾)) = 0)
1093adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
110 fvi 6212 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) = 𝑘)
111 elfzelz 12284 . . . . . . . 8 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℤ)
112111zcnd 11427 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℂ)
113110, 112eqeltrd 2698 . . . . . 6 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) ∈ ℂ)
114113adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (((𝑁𝐾) + 1)...𝑁)) → ( I ‘𝑘) ∈ ℂ)
115 mul02 10158 . . . . . 6 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
116115adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
117 mul01 10159 . . . . . 6 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
118117adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
119 simpr 477 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 ∈ (0...𝑁))
120 nn0uz 11666 . . . . . . . . . . . 12 0 = (ℤ‘0)
121104, 120syl6eleq 2708 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘0))
12272ad2antrr 761 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
123 elfz5 12276 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
124121, 122, 123syl2anc 692 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
125 nn0re 11245 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
126125ad2antrr 761 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
127 nnre 10971 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
128127ad2antlr 762 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
129126, 128subge0d 10561 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ≤ (𝑁𝐾) ↔ 𝐾𝑁))
130124, 129bitr4d 271 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 0 ≤ (𝑁𝐾)))
131119, 130mtbid 314 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 0 ≤ (𝑁𝐾))
13274adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
133132zred 11426 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
134 0re 9984 . . . . . . . . 9 0 ∈ ℝ
135 ltnle 10061 . . . . . . . . 9 (((𝑁𝐾) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
136133, 134, 135sylancl 693 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
137131, 136mpbird 247 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 0)
138 0z 11332 . . . . . . . 8 0 ∈ ℤ
139 zltp1le 11371 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
140132, 138, 139sylancl 693 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
141137, 140mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 0)
142 nn0ge0 11262 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
143142ad2antrr 761 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ≤ 𝑁)
144 0zd 11333 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ ℤ)
14575adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
146 elfz 12274 . . . . . . 7 ((0 ∈ ℤ ∧ ((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
147144, 145, 122, 146syl3anc 1323 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
148141, 143, 147mpbir2and 956 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ (((𝑁𝐾) + 1)...𝑁))
149 simpll 789 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
150 0cn 9976 . . . . . 6 0 ∈ ℂ
151 fvi 6212 . . . . . 6 (0 ∈ ℂ → ( I ‘0) = 0)
152150, 151mp1i 13 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ( I ‘0) = 0)
153109, 114, 116, 118, 148, 149, 152seqz 12789 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = 0)
154153oveq1d 6619 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)) = (0 / (!‘𝐾)))
155 bcval3 13033 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
15620, 155syl3an2 1357 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1571563expa 1262 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
158108, 154, 1573eqtr4rd 2666 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
159102, 158pm2.61dan 831 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613   I cid 4984  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  cuz 11631  +crp 11776  ...cfz 12268  seqcseq 12741  !cfa 13000  Ccbc 13029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-seq 12742  df-fac 13001  df-bc 13030
This theorem is referenced by:  bcn2  13046
  Copyright terms: Public domain W3C validator