MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcxmas Structured version   Visualization version   GIF version

Theorem bcxmas 14764
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁

Proof of Theorem bcxmas
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 14763 . . . . 5 (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0))
2 oveq2 6819 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
32sumeq1d 14628 . . . . 5 (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
41, 3eqeq12d 2773 . . . 4 (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)))
54imbi2d 329 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))))
6 bcxmaslem1 14763 . . . . 5 (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘))
7 oveq2 6819 . . . . . 6 (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘))
87sumeq1d 14628 . . . . 5 (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))
96, 8eqeq12d 2773 . . . 4 (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)))
109imbi2d 329 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))))
11 bcxmaslem1 14763 . . . . 5 (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
12 oveq2 6819 . . . . . 6 (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1)))
1312sumeq1d 14628 . . . . 5 (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
1411, 13eqeq12d 2773 . . . 4 (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
1514imbi2d 329 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
16 bcxmaslem1 14763 . . . . 5 (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀))
17 oveq2 6819 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
1817sumeq1d 14628 . . . . 5 (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
1916, 18eqeq12d 2773 . . . 4 (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
2019imbi2d 329 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))))
21 0nn0 11497 . . . . 5 0 ∈ ℕ0
22 nn0addcl 11518 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈ ℕ0)
23 bcn0 13289 . . . . . 6 ((𝑁 + 0) ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
2422, 23syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1)
2521, 24mpan2 709 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) = 1)
26 0z 11578 . . . . 5 0 ∈ ℤ
27 1nn0 11498 . . . . . . 7 1 ∈ ℕ0
2825, 27syl6eqel 2845 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℕ0)
2928nn0cnd 11543 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 0)C0) ∈ ℂ)
30 bcxmaslem1 14763 . . . . . 6 (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3130fsum1 14673 . . . . 5 ((0 ∈ ℤ ∧ ((𝑁 + 0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
3226, 29, 31sylancr 698 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0))
33 peano2nn0 11523 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
34 nn0addcl 11518 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈ ℕ0)
3533, 21, 34sylancl 697 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 0) ∈ ℕ0)
36 bcn0 13289 . . . . 5 (((𝑁 + 1) + 0) ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3735, 36syl 17 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = 1)
3825, 32, 373eqtr4rd 2803 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))
39 simpr 479 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
40 elnn0uz 11916 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4139, 40sylib 208 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
42 simpl 474 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43 elfznn0 12624 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0)
44 nn0addcl 11518 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑁 + 𝑗) ∈ ℕ0)
4542, 43, 44syl2an 495 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈ ℕ0)
46 elfzelz 12533 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ)
4746adantl 473 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ)
48 bccl 13301 . . . . . . . . . . . 12 (((𝑁 + 𝑗) ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
4945, 47, 48syl2anc 696 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℕ0)
5049nn0cnd 11543 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ)
51 bcxmaslem1 14763 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))
5241, 50, 51fsump1 14684 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))))
53 nn0cn 11492 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
5453adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℂ)
55 nn0cn 11492 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5655adantl 473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
57 1cnd 10246 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 1 ∈ ℂ)
58 add32r 10445 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
5954, 56, 57, 58syl3anc 1477 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘))
6059oveq1d 6826 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))
6160oveq2d 6827 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6252, 61eqtrd 2792 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6362adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
64 oveq1 6818 . . . . . . . 8 ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
6564adantl 473 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
66 ax-1cn 10184 . . . . . . . . . . . . 13 1 ∈ ℂ
67 pncan 10477 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6856, 66, 67sylancl 697 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑘 + 1) − 1) = 𝑘)
6968oveq2d 6827 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘))
7069oveq2d 6827 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)))
71 nn0addcl 11518 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
7233, 71sylan 489 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
73 nn0p1nn 11522 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
7473adantl 473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
7574nnzd 11671 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
76 bcpasc 13300 . . . . . . . . . . 11 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7772, 75, 76syl2anc 696 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
7870, 77eqtr3d 2794 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)))
79 nn0p1nn 11522 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
80 nnnn0addcl 11513 . . . . . . . . . . . . . 14 (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8179, 80sylan 489 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ)
8281nnnn0d 11541 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ0)
83 bccl 13301 . . . . . . . . . . . 12 ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8482, 75, 83syl2anc 696 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℕ0)
8584nn0cnd 11543 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ)
86 nn0z 11590 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8786adantl 473 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
88 bccl 13301 . . . . . . . . . . . . 13 ((((𝑁 + 1) + 𝑘) ∈ ℕ0𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
8971, 87, 88syl2anc 696 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9033, 89sylan 489 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℕ0)
9190nn0cnd 11543 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ)
9285, 91addcomd 10428 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))))
93 peano2cn 10398 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
9453, 93syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
9594adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
9695, 56, 57addassd 10252 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1)))
9796oveq1d 6826 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9878, 92, 973eqtr3d 2800 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
9998adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)))
10063, 65, 993eqtr2rd 2799 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))
101100ex 449 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))
102101expcom 450 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
103102a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))))
1045, 10, 15, 20, 38, 103nn0ind 11662 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))
105104impcom 445 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wcel 2137  cfv 6047  (class class class)co 6811  cc 10124  0cc0 10126  1c1 10127   + caddc 10129  cmin 10456  cn 11210  0cn0 11482  cz 11567  cuz 11877  ...cfz 12517  Ccbc 13281  Σcsu 14613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-oi 8578  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-n0 11483  df-z 11568  df-uz 11878  df-rp 12024  df-fz 12518  df-fzo 12658  df-seq 12994  df-exp 13053  df-fac 13253  df-bc 13282  df-hash 13310  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-sum 14614
This theorem is referenced by:  arisum  14789
  Copyright terms: Public domain W3C validator