Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bddiblnc Structured version   Visualization version   GIF version

Theorem bddiblnc 34843
Description: Choice-free proof of bddibl 24367. (Contributed by Brendan Leahy, 2-Nov-2017.) (Revised by Brendan Leahy, 6-Nov-2017.)
Assertion
Ref Expression
bddiblnc ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem bddiblnc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 24153 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21feqmptd 6726 . . 3 (𝐹 ∈ MblFn → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
323ad2ant1 1125 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
4 rzal 4449 . . . . . . . 8 (dom 𝐹 = ∅ → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0)
5 mpteq12 5144 . . . . . . . 8 ((dom 𝐹 = ∅ ∧ ∀𝑧 ∈ dom 𝐹(𝐹𝑧) = 0) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
64, 5mpdan 683 . . . . . . 7 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) = (𝑧 ∈ ∅ ↦ 0))
7 fconstmpt 5607 . . . . . . . 8 (∅ × {0}) = (𝑧 ∈ ∅ ↦ 0)
8 0mbl 24067 . . . . . . . . 9 ∅ ∈ dom vol
9 ibl0 24314 . . . . . . . . 9 (∅ ∈ dom vol → (∅ × {0}) ∈ 𝐿1)
108, 9ax-mp 5 . . . . . . . 8 (∅ × {0}) ∈ 𝐿1
117, 10eqeltrri 2907 . . . . . . 7 (𝑧 ∈ ∅ ↦ 0) ∈ 𝐿1
126, 11syl6eqel 2918 . . . . . 6 (dom 𝐹 = ∅ → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
1312adantl 482 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 = ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
14 r19.2z 4436 . . . . . . . . . 10 ((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → ∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
1514anim1i 614 . . . . . . . . 9 (((dom 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
1615an31s 650 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ))
171ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
1817ffvelrnda 6843 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ℂ)
1918absge0d 14792 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ≤ (abs‘(𝐹𝑦)))
20 0red 10632 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 0 ∈ ℝ)
2118abscld 14784 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → (abs‘(𝐹𝑦)) ∈ ℝ)
22 simplr 765 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
23 letr 10722 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (abs‘(𝐹𝑦)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2420, 21, 22, 23syl3anc 1363 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((0 ≤ (abs‘(𝐹𝑦)) ∧ (abs‘(𝐹𝑦)) ≤ 𝑥) → 0 ≤ 𝑥))
2519, 24mpand 691 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom 𝐹) → ((abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2625rexlimdva 3281 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥))
2726ex 413 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (𝑥 ∈ ℝ → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → 0 ≤ 𝑥)))
2827com23 86 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑥 ∈ ℝ → 0 ≤ 𝑥)))
2928imp32 419 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (∃𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑥 ∈ ℝ)) → 0 ≤ 𝑥)
3016, 29sylan2 592 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ dom 𝐹 ≠ ∅)) → 0 ≤ 𝑥)
3130anassrs 468 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → 0 ≤ 𝑥)
32 an32 642 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥))
33 id 22 . . . . . . . . . . 11 (𝐹 ∈ MblFn → 𝐹 ∈ MblFn)
342, 33eqeltrrd 2911 . . . . . . . . . 10 (𝐹 ∈ MblFn → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
3534ad2antrr 722 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn)
361ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝐹:dom 𝐹⟶ℂ)
3736ffvelrnda 6843 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3837recld 14541 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
3938rexrd 10679 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
4039adantrr 713 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ ℝ*)
41 simprr 769 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ≤ (ℜ‘(𝐹𝑧)))
42 elxrge0 12833 . . . . . . . . . . . . . 14 ((ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐹𝑧))))
4340, 41, 42sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → (ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
44 0e0iccpnf 12835 . . . . . . . . . . . . . 14 0 ∈ (0[,]+∞)
4544a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
4643, 45ifclda 4497 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
4746fmpttd 6871 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
48 mbfdm 24154 . . . . . . . . . . . . . 14 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
4948ad2antrr 722 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
50 simplr 765 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (vol‘dom 𝐹) ∈ ℝ)
51 elrege0 12830 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5251biimpri 229 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)+∞))
5352ad2antrl 724 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,)+∞))
54 itg2const 24268 . . . . . . . . . . . . 13 ((dom 𝐹 ∈ dom vol ∧ (vol‘dom 𝐹) ∈ ℝ ∧ 𝑥 ∈ (0[,)+∞)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
5549, 50, 53, 54syl3anc 1363 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) = (𝑥 · (vol‘dom 𝐹)))
56 simprll 775 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
5756, 50remulcld 10659 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑥 · (vol‘dom 𝐹)) ∈ ℝ)
5855, 57eqeltrd 2910 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ)
59 rexr 10675 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
60 elxrge0 12833 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
6160biimpri 229 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6259, 61sylan 580 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,]+∞))
6362ad2antrl 724 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ (0[,]+∞))
6463adantr 481 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ (0[,]+∞))
65 ifcl 4507 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6664, 44, 65sylancl 586 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) ∈ (0[,]+∞))
6766fmpttd 6871 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞))
68 ifan 4514 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0)
691ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
7069ffvelrnda 6843 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
7170recld 14541 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℝ)
7270abscld 14784 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
7356adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 𝑥 ∈ ℝ)
7470releabsd 14799 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
75 2fveq3 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
7675breq1d 5067 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
7776rspccva 3619 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7877adantll 710 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
7978adantll 710 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
8071, 72, 73, 74, 79letrd 10785 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ≤ 𝑥)
81 simprlr 776 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 0 ≤ 𝑥)
8281adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → 0 ≤ 𝑥)
83 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘(𝐹𝑧)) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → ((ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
84 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
8583, 84ifboth 4501 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
8680, 82, 85syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
87 iftrue 4469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
8887adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0))
89 iftrue 4469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9089adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 𝑥)
9186, 88, 903brtr4d 5089 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9291ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
93 0le0 11726 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
9493a1i 11 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → 0 ≤ 0)
95 iffalse 4472 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) = 0)
96 iffalse 4472 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, 𝑥, 0) = 0)
9794, 95, 963brtr4d 5089 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9892, 97pm2.61d1 181 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℜ‘(𝐹𝑧)), (ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
9968, 98eqbrtrid 5092 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
10099ralrimivw 3180 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
101 reex 10616 . . . . . . . . . . . . . . 15 ℝ ∈ V
102101a1i 11 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
103 eqidd 2819 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
104 eqidd 2819 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
105102, 46, 66, 103, 104ofrfval2 7416 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
106100, 105mpbird 258 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
107 itg2le 24267 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
10847, 67, 106, 107syl3anc 1363 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
109 itg2lecl 24266 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11047, 58, 108, 109syl3anc 1363 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
11138renegcld 11055 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
112111rexrd 10679 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
113112adantrr 713 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ ℝ*)
114 simprr 769 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ≤ -(ℜ‘(𝐹𝑧)))
115 elxrge0 12833 . . . . . . . . . . . . . 14 (-(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℜ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℜ‘(𝐹𝑧))))
116113, 114, 115sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → -(ℜ‘(𝐹𝑧)) ∈ (0[,]+∞))
11744a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
118116, 117ifclda 4497 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
119118fmpttd 6871 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
120 ifan 4514 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0)
12171renegcld 11055 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ∈ ℝ)
12271recnd 10657 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℜ‘(𝐹𝑧)) ∈ ℂ)
123122abscld 14784 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ∈ ℝ)
124121leabsd 14762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘-(ℜ‘(𝐹𝑧))))
125122absnegd 14797 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℜ‘(𝐹𝑧))) = (abs‘(ℜ‘(𝐹𝑧))))
126124, 125breqtrd 5083 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(ℜ‘(𝐹𝑧))))
127 absrele 14656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
12870, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℜ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
129121, 123, 72, 126, 128letrd 10785 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
130121, 72, 73, 129, 79letrd 10785 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℜ‘(𝐹𝑧)) ≤ 𝑥)
131 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (-(ℜ‘(𝐹𝑧)) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
132 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥))
133131, 132ifboth 4501 . . . . . . . . . . . . . . . . . . 19 ((-(ℜ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
134130, 82, 133syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0) ≤ 𝑥)
135 iftrue 4469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
136135adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0))
137134, 136, 903brtr4d 5089 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
138137ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
139 iffalse 4472 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) = 0)
14094, 139, 963brtr4d 5089 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
141138, 140pm2.61d1 181 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℜ‘(𝐹𝑧)), -(ℜ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
142120, 141eqbrtrid 5092 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
143142ralrimivw 3180 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
144 eqidd 2819 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
145102, 118, 66, 144, 104ofrfval2 7416 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
146143, 145mpbird 258 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
147 itg2le 24267 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
148119, 67, 146, 147syl3anc 1363 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
149 itg2lecl 24266 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
150119, 58, 148, 149syl3anc 1363 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ)
151110, 150jca 512 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ))
15237imcld 14542 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
153152rexrd 10679 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
154153adantrr 713 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ ℝ*)
155 simprr 769 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ≤ (ℑ‘(𝐹𝑧)))
156 elxrge0 12833 . . . . . . . . . . . . . 14 ((ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ ((ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ (ℑ‘(𝐹𝑧))))
157154, 155, 156sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → (ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
15844a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
159157, 158ifclda 4497 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
160159fmpttd 6871 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
161 ifan 4514 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0)
16270imcld 14542 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℝ)
163162recnd 10657 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ∈ ℂ)
164163abscld 14784 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ∈ ℝ)
165162leabsd 14762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
166 absimle 14657 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑧) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
16770, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(ℑ‘(𝐹𝑧))) ≤ (abs‘(𝐹𝑧)))
168162, 164, 72, 165, 167letrd 10785 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
169162, 72, 73, 168, 79letrd 10785 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (ℑ‘(𝐹𝑧)) ≤ 𝑥)
170 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 ((ℑ‘(𝐹𝑧)) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → ((ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
171 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
172170, 171ifboth 4501 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
173169, 82, 172syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
174 iftrue 4469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
175174adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0))
176173, 175, 903brtr4d 5089 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
177176ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
178 iffalse 4472 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) = 0)
17994, 178, 963brtr4d 5089 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
180177, 179pm2.61d1 181 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ (ℑ‘(𝐹𝑧)), (ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
181161, 180eqbrtrid 5092 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
182181ralrimivw 3180 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
183 eqidd 2819 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
184102, 159, 66, 183, 104ofrfval2 7416 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
185182, 184mpbird 258 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
186 itg2le 24267 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
187160, 67, 185, 186syl3anc 1363 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
188 itg2lecl 24266 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
189160, 58, 187, 188syl3anc 1363 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
190152renegcld 11055 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
191190rexrd 10679 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
192191adantrr 713 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ ℝ*)
193 simprr 769 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ≤ -(ℑ‘(𝐹𝑧)))
194 elxrge0 12833 . . . . . . . . . . . . . 14 (-(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞) ↔ (-(ℑ‘(𝐹𝑧)) ∈ ℝ* ∧ 0 ≤ -(ℑ‘(𝐹𝑧))))
195192, 193, 194sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → -(ℑ‘(𝐹𝑧)) ∈ (0[,]+∞))
19644a1i 11 . . . . . . . . . . . . 13 (((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧)))) → 0 ∈ (0[,]+∞))
197195, 196ifclda 4497 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ∈ (0[,]+∞))
198197fmpttd 6871 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞))
199 ifan 4514 . . . . . . . . . . . . . . 15 if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) = if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0)
200162renegcld 11055 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ∈ ℝ)
201200leabsd 14762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘-(ℑ‘(𝐹𝑧))))
202163absnegd 14797 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (abs‘-(ℑ‘(𝐹𝑧))) = (abs‘(ℑ‘(𝐹𝑧))))
203201, 202breqtrd 5083 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(ℑ‘(𝐹𝑧))))
204200, 164, 72, 203, 167letrd 10785 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑧)))
205200, 72, 73, 204, 79letrd 10785 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → -(ℑ‘(𝐹𝑧)) ≤ 𝑥)
206 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (-(ℑ‘(𝐹𝑧)) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
207 breq1 5060 . . . . . . . . . . . . . . . . . . . 20 (0 = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) → (0 ≤ 𝑥 ↔ if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥))
208206, 207ifboth 4501 . . . . . . . . . . . . . . . . . . 19 ((-(ℑ‘(𝐹𝑧)) ≤ 𝑥 ∧ 0 ≤ 𝑥) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
209205, 82, 208syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0) ≤ 𝑥)
210 iftrue 4469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
211210adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0))
212209, 211, 903brtr4d 5089 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
213212ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
214 iffalse 4472 . . . . . . . . . . . . . . . . 17 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) = 0)
21594, 214, 963brtr4d 5089 . . . . . . . . . . . . . . . 16 𝑧 ∈ dom 𝐹 → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
216213, 215pm2.61d1 181 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ dom 𝐹, if(0 ≤ -(ℑ‘(𝐹𝑧)), -(ℑ‘(𝐹𝑧)), 0), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
217199, 216eqbrtrid 5092 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
218217ralrimivw 3180 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0))
219 eqidd 2819 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
220102, 197, 66, 219, 104ofrfval2 7416 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)) ↔ ∀𝑧 ∈ ℝ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0) ≤ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
221218, 220mpbird 258 . . . . . . . . . . . 12 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))
222 itg2le 24267 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
223198, 67, 221, 222syl3anc 1363 . . . . . . . . . . 11 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))))
224 itg2lecl 24266 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ dom 𝐹, 𝑥, 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
225198, 58, 223, 224syl3anc 1363 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ)
226189, 225jca 512 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))
227 eqid 2818 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0)))
228 eqid 2818 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0)))
229 eqid 2818 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0)))
230 eqid 2818 . . . . . . . . . 10 (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) = (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0)))
231227, 228, 229, 230, 70iblcnlem1 24315 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1 ↔ ((𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ MblFn ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℜ‘(𝐹𝑧))), (ℜ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℜ‘(𝐹𝑧))), -(ℜ‘(𝐹𝑧)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ (ℑ‘(𝐹𝑧))), (ℑ‘(𝐹𝑧)), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if((𝑧 ∈ dom 𝐹 ∧ 0 ≤ -(ℑ‘(𝐹𝑧))), -(ℑ‘(𝐹𝑧)), 0))) ∈ ℝ))))
23235, 151, 226, 231mpbir3and 1334 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23332, 232sylan2b 593 . . . . . . 7 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) ∧ 0 ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
234233anassrs 468 . . . . . 6 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 0 ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23531, 234syldan 591 . . . . 5 ((((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ dom 𝐹 ≠ ∅) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
23613, 235pm2.61dane 3101 . . . 4 (((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
237236rexlimdvaa 3282 . . 3 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1))
2382373impia 1109 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ∈ 𝐿1)
2393, 238eqeltrd 2910 1 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  c0 4288  ifcif 4463  {csn 4557   class class class wbr 5057  cmpt 5137   × cxp 5546  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7145  r cofr 7397  cc 10523  cr 10524  0cc0 10525   · cmul 10530  +∞cpnf 10660  *cxr 10662  cle 10664  -cneg 10859  [,)cico 12728  [,]cicc 12729  cre 14444  cim 14445  abscabs 14581  volcvol 23991  MblFncmbf 24142  2citg2 24144  𝐿1cibl 24145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-xmet 20466  df-met 20467  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-itg2 24149  df-ibl 24150  df-0p 24198
This theorem is referenced by:  cnicciblnc  34844
  Copyright terms: Public domain W3C validator