![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophdi | Structured version Visualization version GIF version |
Description: The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophdi | ⊢ (𝑆 −op 𝑇) ∈ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 ⊢ 𝑆 ∈ BndLinOp | |
2 | bdopf 29051 | . . . 4 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ |
4 | nmoptri.2 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
5 | bdopf 29051 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ |
7 | 3, 6 | honegsubi 28985 | . 2 ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
8 | neg1cn 11336 | . . . 4 ⊢ -1 ∈ ℂ | |
9 | 4 | bdophmi 29221 | . . . 4 ⊢ (-1 ∈ ℂ → (-1 ·op 𝑇) ∈ BndLinOp) |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (-1 ·op 𝑇) ∈ BndLinOp |
11 | 1, 10 | bdophsi 29285 | . 2 ⊢ (𝑆 +op (-1 ·op 𝑇)) ∈ BndLinOp |
12 | 7, 11 | eqeltrri 2836 | 1 ⊢ (𝑆 −op 𝑇) ∈ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ⟶wf 6045 (class class class)co 6814 ℂcc 10146 1c1 10149 -cneg 10479 ℋchil 28106 +op chos 28125 ·op chot 28126 −op chod 28127 BndLinOpcbo 28135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-hilex 28186 ax-hfvadd 28187 ax-hvcom 28188 ax-hvass 28189 ax-hv0cl 28190 ax-hvaddid 28191 ax-hfvmul 28192 ax-hvmulid 28193 ax-hvmulass 28194 ax-hvdistr1 28195 ax-hvdistr2 28196 ax-hvmul0 28197 ax-hfi 28266 ax-his1 28269 ax-his2 28270 ax-his3 28271 ax-his4 28272 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-grpo 27677 df-gid 27678 df-ablo 27729 df-vc 27744 df-nv 27777 df-va 27780 df-ba 27781 df-sm 27782 df-0v 27783 df-nmcv 27785 df-hnorm 28155 df-hba 28156 df-hvsub 28158 df-hosum 28919 df-homul 28920 df-hodif 28921 df-nmop 29028 df-lnop 29030 df-bdop 29031 |
This theorem is referenced by: unierri 29293 |
Copyright terms: Public domain | W3C validator |